
Elastic RSS: Co-Scheduling Packets and Cores
Using Programmable NICs

Alexander Rucker

Stanford University
Tushar Swamy

Stanford University

Muhammad Shahbaz

Stanford University
Kunle Olukotun

Stanford University

ABSTRACT
Meeting Service-Level Objectives (SLOs) for workloads in

today’s datacenter environments places stringent demands

on end-host servers: work conservation, tolerance to varying

request service time distributions, high throughput, and CPU

e�ciency. Beginning with Receive Side Scaling (RSS), various

schedulers have been proposed to steer packets to coreswhile

preserving locality. However, these techniques are either

too in�exible (randomly steering tra�c at the NIC) or slow
(bottlenecked by a central CPU-based scheduler).

In this paper, we present Elastic RSS (eRSS), a system that

extends traditional RSS by scheduling packets and cores us-
ing emerging programmable NICs with new abstractions

(e.g., map-reduce). Operating at the NIC with minimal in-

tervention from the host CPU, eRSS responds to load shifts

at line rate and on a per-packet basis. eRSS also supports

distributed packet stealing and fast preemption per-core to

improve tail latency under heavy-tailed service time distribu-

tions. Our preliminary evaluation shows that eRSS increases

CPU e�ciency while responding to rapid load changes and

meeting real-world tail latency constraints of 100 µs.

CCS CONCEPTS
• Networks → End nodes; Packet scheduling; Cloud
computing; Programmable networks; Tra�c engineering

algorithms;

KEYWORDS
RSS; programmable NICs; map-reduce; Taurus;

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for pro�t or commercial advantage and that copies bear

this notice and the full citation on the �rst page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior speci�c permission and/or a fee. Request

permissions from permissions@acm.org.

APNet ’19, August 17–18, 2019, Beijing, China
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-7635-8/19/08. . . $15.00

https://doi.org/10.1145/3343180.3343184

ACM Reference Format:
Alexander Rucker, Tushar Swamy, Muhammad Shahbaz, and Kunle

Olukotun. 2019. Elastic RSS: Co-Scheduling Packets and Cores Us-

ing Programmable NICs. In APNet ’19: 3rd Asia-Paci�c Workshop
on Networking, August 17–18, 2019, Beijing, China. ACM, New York,

NY, USA, 7 pages. https://doi.org/10.1145/3343180.3343184

1 INTRODUCTION
Modern data centers are highly-multiplexed environments,

running myriad workloads sharing a common infrastructure

(e.g., servers and switches). These workloads range from

latency-sensitive tasks (e.g., in-memory databases [20] and

key-value storage [1, 16]) to batch-processing jobs (e.g., deep

learning [14] and garbage collection [12]), each with speci�c

Service-Level Objectives (SLOs) [6]. So far, techniques for

workload scheduling have largely been optimized for either

latency-sensitive tasks with time-critical, small jobs running

at �ne timescales (typically µs) [11] or batch applications

with non-interactive, throughput intensive jobs running at

coarse timescales [9], but not both.

Recent proposals, such as Shenango [15] and Shinjuku [11],

meet tail latency SLOs and achieve high CPU e�ciency while

tolerating dispersion in requests’ service time distributions

by scheduling and preempting cores at extremely short in-

tervals (5 µs). However, Shenango and Shinjuku sacri�ce

throughput by dedicating a CPU core to �ne-grained task

scheduling and packet forwarding (Figure 1a); this can not

saturate current 10Gbps links with minimum-size packets

and will not scale to future 100Gbps NICs.

Prior proposals using dedicated hardware, such as IX [4]

and ZygOS [17] with RSS-enabled NICs (Figure 1b), were able

to handle requests at line rate. But, these approaches were

not CPU e�cient—they used random queueing, which has

poor theoretical performance, and over-provisioned cores to

handle bursts. They were also susceptible to long tail laten-

cies due to head-of-line blocking under dispersive service

time distributions.

Ideally, any solution for workload scheduling in today’s

shared data centersmust run at line rate and bework conserv-

ing, dispersion tolerant, and CPU e�cient, as summarized

in Table 1. Shenango [15] and Shinjuku [11] showed that a

71

https://doi.org/10.1145/3343180.3343184
https://doi.org/10.1145/3343180.3343184

APNet ’19, August 17–18, 2019, Beijing, China A. Rucker et al.

NIC

NIC

NIC

b) RSS: 4 useful cores
at 50% load

a) CPU-based Scheduling: 3 useful
cores at 100%, incl. 1 for batch jobs

c) eRSS: 4 useful cores at
100%, incl. 2 for batch jobs

Sched

Figure 1: eRSS achieves better core utilization than
RSS-only techniques without dedicating a CPU core
for packet forwarding.

scheduler can be both work conserving and CPU e�cient,

even under dispersive request distributions, if it schedules

packets and cores together at a �ne-grained timescale. We

argue that schedulers can provide these advantages and sus-

tain higher throughput by co-scheduling packets and cores

directly at the NIC.

Modern SmartNICs (e.g., Mellanox Blue�eld [2]) can the-

oretically schedule packets using on-chip ARM cores; how-

ever, these cores are designed for lightweight management

tasks and are too slow. PISA-based NICs with a match-action

pipeline [8], on the other hand, would require consistent up-

dates to �ow tables [11] using Programmed IO (PIO) over a

PCIe bus, resulting in scheduling latencies of approximately

100 µs [15]. However, emerging programmable NICs, like

Taurus and its map-reduce abstraction [19], alleviate many

of these concerns.

In this paper, we present Elastic RSS (eRSS), a system that

simultaneously allocates cores and schedules packets at line-

rate in the NIC. Our implementation of eRSS uses the map-

reduce primitives introduced by Taurus [19] for packet sched-

uling. The map operation calculates the weighted consistent-

hashing distance to each core for a packet, and the reduce

stage �nds the closest allocated core. By scheduling at the

NIC (Figure 1c), we avoid both the need to dedicate a core for

scheduling and the resulting packet-forwarding bottleneck.

We introduce a core-scheduling algorithm that responds to

rapid load shifts: if a burst arrives, the NIC detects it within

microseconds and allocates the necessary cores. The host

CPU performs more complex but infrequent tasks, such as

estimating the throughput of a core, scheduling background

tasks, and periodically updating the NIC’s shadow counters.

We evaluate this algorithm and show that it decreases core

utilization while maintaining latency, even for sudden bursts.

We start by discussing the recent related work on low-

latency schedulers and programmable NICs.

Scheme

Packet

Stealing

Dispersion

Tolerance

CPU

E�ciency

Throughput

(64B Pkt)

IX [4] no none none line-rate

ZygOS [17] yes low none line-rate

Shinjuku [11] yes high none < 10Gbps

Shenango [15] yes low high < 6Gbps

eRSS yes high high line-rate

Table 1: eRSS vs. existing µs-scale approaches.

2 BACKGROUND & RELATEDWORK
Low-latency task scheduling. Table 1 compares state-

of-the-art schedulers with eRSS and highlights the dichotomy

between CPU-e�cient, dispersion-tolerant stacks and high-

throughput ones. For example, IX [4], a data-plane operating

system, uses adaptive batching to schedule requests at high

throughput. The NIC, using �ow-consistent hashing (i.e.,

RSS), distributes packets to cores, which then process these

packets in a distributed, First Come First Serve (d-FCFS)

manner. Each core polls its packet queue to reduce jitter (e.g.,

interrupt variability) and decrease tail latency. However, IX

over-provisions cores to respond to bursts and has higher

latencies under heavy-tailed request distributions due to its

run-to-completion execution model and use of RSS.

ZygOS [17] improves upon IX by letting cores steal pack-

ets from other cores. Packet stealing improves tail latency

for requests that su�er head-of-line blocking at cores serv-

ing earlier requests. ZygOS implements a work conserving

scheduler via packet stealing; it adds specialized queues to

each core that other cores can query using interprocessor in-

terrupts. Unlike IX, ZygOS approximates a centralized FCFS

(c-FCFS) model, where all cores serve a single queue. Still,

despite these improvements, both ZygOS and IX perform

poorly when variance among service times is high. This is

because FCFS leads to high tail latencies for short requests

when cores are busy servicing longer requests.

Shinjuku [11] approximates centralized Processor Sharing

(c-PS) using preemption, which outperforms FCFS for heavy-

tailed and highly-dispersive workloads [21]. Using selective

preemption, Shinjuku implements c-PS for large packets

while operating as a (more e�cient) c-FCFS system for aver-

age and small requests. However, allocating a dedicated CPU

core to packet forwarding, scheduling jobs, and preempt-

ing tasks at µs-scale limits Shinjuku’s maximum throughput

(Table 1). Moreover, because Shinjuku must always allocate

enough cores for bursts, it has poor CPU utilization.

Shenango [15], on the other hand, improves CPU e�-

ciency while achieving tail latencies comparable to ZygOS.

Like Shinjuku, Shenango dedicates a core, but uses it to fre-

quently schedule CPU cores instead of preempting long-

running requests. Allocating cores on a 5 µs granularity

72

Elastic RSS APNet ’19, August 17–18, 2019, Beijing, China

improves e�ciency and enables Shenango to rapidly re-

spond to bursts using minimal CPU cores. However, because

Shenango dedicates a core to packet forwarding, it can not

scale to many-core systems with line rates over 40Gbps.

Using emerging programmable data planes, eRSS supports

Shenango’s �ne-grained core allocation natively and Shin-

juku’s c-PS scheduling through a light-weight runtime; this

provides low tail latency and CPU-e�ciency at line rate.

Emerging NIC data planes. ARM-based SmartNICs [2]

and FPGA- and PISA-based data planes [7, 8] can acceler-

ate simple workloads (like key-value stores), but are either

too slow or too in�exible to run complex tasks like core

scheduling. Furthermore, the slowdown of Moore’s Law and

rapid increase in network tra�c requires domain-speci�c

designs to meet SLOs for modern workloads. Taurus [19] is

an emerging NIC platform that extends a PISA data plane

(i.e., match-action tables [5]) with a Coarse-Grained Recon-

�gurable Architecture (CGRA); Taurus increases compute

density and provides map-reduce parallelism per-packet. We

model eRSS as operating within Taurus’s constraints, using

match-action tables for workload estimation and map-reduce

parallelism for consistent hashing (Figure 2).

3 DESIGN
In eRSS, we divide processing across two timescales: �ne-

grained, per-packet processing at the NIC (§3.1) and coarse-

grained state management at the host CPU (§3.2). eRSS’s NIC

pipeline (Figure 2) decides how many cores to allocate for

each scaling group, which could be an application or a VM;

it also routes each packet to a core. The NIC’s management

core implements a control loop using shadow counters to es-

timate CPU queue depth and periodically load balance pack-

ets among cores within a scaling group. Finally, a software

manager on the host CPU estimates request service times,

allocates slack cores between scaling groups, and updates

NIC shadow counters on a coarser timescale (e.g., 100 µs).

3.1 Fine-Grained Per-Packet Processing
Algorithm 1 shows the steps each packet passes through in

eRSS’s NIC pipeline. We �rst assign an incoming packet to a

scaling group (Line 1), which is uniquely identi�ed by the

packet header (e.g., 5-tuple). eRSS makes decisions for each

scaling group independently, including workload estimation,

core allocation, and packet steering.

Workload estimation. After identifying a scaling group,

eRSS next estimates the associated workload (Line 2). eRSS

implements two workload estimators to provision an ade-

quate number of cores for each scaling group. The �rst is

instantaneous workload (in B/s), an exponentially decaying

counter that estimates throughput over a short time interval

(e.g., 5 µs). The second is residual workload (in B), a counter

Algorithm 1 eRSS’s NIC execution pipeline

State: workloadWд , residual-bytes bд , last-update t
′
д , cores cд ,

weightswv
д , queues q

v
д , virtual-core vC

Constants: hash-centroids Hv
, residual-delay di = 5µs , core-

delay dd = 500ns , residual-thresh Ti = 100kB and Td = 1 cyc,

slack S = 0.75

Inputs: time t , packet p, throughput tд , packet-hash h, max-

coresMд , v2p-mapping vд
Outputs: physical-cores

1: д← Get-Scaling-Group(p)
2: Wд ←Wд + Size(p), bд ← bд + Size(p)
3: if (Wд ≥ tд ∗ cд ∗ S ∨
4: (bд ≥ Td ∧ t − t

′
д ≥ di)) then

5: cд ← cд + 1, t ′д ← t

6: Interrupt(cд)
7: else if (Wд ≤ tд ∗ (cд − 1) ∗ S ∗ 0.9 ∧
8: bд < cд ∗ tд ∗Td ∧
9: Time() − t ′д ≥ dd ∧

10: cд > 0) then
11: Signal-In-Band(cд)
12: cд ← cд − 1, t ′д ← t

13: (vC,best) ← (0,∞)
14: for all i ∈ [0, cд] do
15: if |H i − h | ∗W i

д < best then
16: (vC,best) ← (i, |H i − h | ∗W i

д)

17: qд[vC] ← qд[vC] + Size(p)
18: return vд[vC]

decaying linearly and proportionally to the number of cur-

rently allocated cores. The residual counter ensures that

there are enough cores left running to drain the queues, even

if the instantaneous throughput drops rapidly or can not re-

act to a load spike (e.g., a scaling group runs out of cores). The

software runtime estimates throughput per core, necessary
to determine the number of cores needed for an incoming

packet stream. The decaying counters are implemented as

registers in a match-action pipeline stage, which the control

plane periodically decreases by a constant factor.

Core allocation. The next stage in the eRSS NIC pipeline

determines the number of cores needed for a scaling group,

i.e., whether too many, too few, or the correct number of

cores are currently allocated. If the instantaneous workload

is greater than some fraction (e.g., 75%) of the estimated

throughput of all cores, eRSS allocates one more core (Line 3).

eRSS can also increase the core count if the residual workload

is above a certain threshold (Line 4). eRSS limits increments

based on residual workload to one every 5 µs—otherwise, a
brief excursion above the threshold would result in quickly

reaching the maximum core count.

eRSS deallocates cores only when the instantaneous work-

load falls below 90% of the threshold for one fewer than the

number of allocated cores (Line 7) and the residual workload

73

APNet ’19, August 17–18, 2019, Beijing, China A. Rucker et al.

P
a
r
s
e
r

Workload
Estimation

per
Scaling Grp

Match-Action Pipeline

Core
Allocation

per
Scaling Grp

Map-Reduce
Block

Consistent
Hashing

with Weights

per
Scaling Grp’s
Virtual Core

Queue-Depth
Estimation

per
Scaling Grp’s
Virtual Core

V2P Core
Mapping

per
Scaling Grp

Match-Action Pipeline

D
e
p
a
r
s
e
r

Programmable NIC On-chip Core
(ARM or PowerPC)

PHV

Update weights
(in 10µs)

Interrupt App1 ~c-FCFS
App2 ~c-PS

Mngr

Host CPUs

Sync with NIC (in 100µs)

Figure 2: eRSS’s NIC pipeline performs core and packet scheduling for each incoming packet. The on-chip core
updates weights at approximately 10 µs intervals, and the software manager syncs runtime state (e.g., the true
queue depths and per-scaling group core mapping) with the NIC at 100 µs intervals.

is negligible (Line 8). Di�erent increase and decrease thresh-

olds provide hysteresis; eRSS also deallocates cores only

once every 500 ns to avoid undershooting the ideal number

of cores. eRSS tracks the currently allocated cores using an

up-down counter register in Taurus’s match-action pipeline

for each scaling group.

Noti�cations via interrupts. Periodically, the software
manager determines which slack cores to assign for each

scaling group and initializes a sleeping process on each. eRSS

noti�es the software manager whenever the core count is

updated for a given scaling group. When allocating a core,

eRSS interrupts the target core and wakes up the sleeping

process to begin handling packets (Line 6). In addition to their

low latency, interrupts can preempt an unmodi�ed OS task,

allowing eRSS to operate alongside existing software. When

deallocating a core, eRSS prepends a special header to the

last packet sent to that core. This ensures that the software

manager deallocates the core only when it has served all

pending packets (Line 11). After eRSS yields control, the OS

can run other processes (e.g., batch jobs) on the core using

its own scheduler (e.g., CFS [13]).

Consistent hashing&virtual–physical coremapping.
In eRSS, virtual cores within a scaling group are assigned

using a dense, zero-based addressing scheme to simplify allo-

cation: at any given time, virtual cores in the range [0,max]

are active. A map operation calculates the weighted distance

from the packet’s 5-tuple hash to each virtual core, follow-

ing the scheme described in [18]. We use distances on a

three-dimensional torus instead of a ring; this provides more

adjacency for load-shifting. The reduce operation then se-

lects the best core: the core with minimum distance to the

hash among the allocated virtual cores (i.e., those in [0,max]).

This yields a virtual core, which indexes a per-scaling group

table to yield a physical core (Line 18).

Updating weights using the on-chip core. eRSS esti-

mates per-virtual core queue depths following each packet

(Line 17); periodically, the on-chip core uses the queue depths

to update the weights in the consistent hashing stage. These

weights help distribute tra�c across cores in the presence of

both load imbalances for each scaling group and load shifts

from adding and removing cores. The on-chip core forms a

negative feedback loop when updating the weights, directing

tra�c from heavily loaded cores to lightly loaded ones. The

updates happen relatively infrequently (e.g., every 10 µs),
and not on a per-packet basis, to prevent changing allocation

decisions based on spurious variations in tra�c (i.e., noise).

3.2 Coarse-Grained State Management
eRSS’s software manager (Figure 2) synchronizes true per-

core queue depths with the NIC to update both shadow and

residual workload counters. It also maintains and updates an

estimation of packet throughput per scaling group, which

allows the NIC to infer a rough mapping of incoming packets

to execution time. This accounts for long-term drift in appli-

cation characteristics and moves complexity from hardware

to software. In our preliminary evaluation, we model the

per-packet workload as a linear function of packet size, but

a more complex system would use additional packet charac-

teristics (e.g., application headers) to predict workload.

74

Elastic RSS APNet ’19, August 17–18, 2019, Beijing, China

Additionally, the software manager allocates cores to scal-

ing groups. In eRSS, cores are independently scheduled for

each scaling group; therefore, the same core cannot simulta-

neously be available to two scaling groups at the NIC. Instead,

on a coarse time scale (100 µs), the software manager deter-

mines the maximum number of slack cores for each scaling

group. It will reclaim slack cores from scaling groups not

allocating all their cores and provide them to other scaling

groups such that a greater fraction of their cores are allocated.

Doing so ensures that each scaling group has headroom to

adapt to tra�c variations—if a group uses all of its cores

within a 100 µs interval, it will receive more cores at the next

one. However, a software manager can also enforce sched-

uling decisions to guarantee SLOs, such as provisioning a

minimum number of cores per application.

3.3 Runtime Support & Optimizations
A variety of software techniques, such as packet stealing

[11] and preemption [15], exist to avoid head-of-line block-

ing and approximate c-FCFS or c-PS scheduling. Because

eRSS is a hardware solution, it does not dictate the use of a

speci�c software runtime: packet stealing and preemption

are infrequent, and need not run at line rate. Furthermore,

the software runtime can implement distributed packet steal-
ing and preemption to mitigate the need for a centralized

scheduler [15]. Rapid preemption can happen on a per-core

basis to emulate processor sharing; packets are �rst sent to a

core using eRSS. Then, for each scaling group, long-running

requests are preempted and sent to a shared queue (Figure 2,

App2 ∼c-PS), from which all cores periodically draw pack-

ets. For simplicity, in our preliminary evaluation, we do not

model preemption or packet stealing.

4 PRELIMINARY EVALUATION
Experiment setup. We built a simulator running a syn-

thetic system model to evaluate eRSS, including request ar-

rival times, background workloads, and realistic �ow and

packet sizes. Our simulator tracks a �xed number of con-

current �ows, with �ow and packet sizes drawn from em-

pirically measured distributions [3, 10]. Furthermore, the

inter-arrival time between packets uses a Poisson distribu-

tion, with λ scaled to reach a target throughput. To model

dispersion, the request service times in our simulator are

kept proportional to the sizes of the processed packets (e.g.,

4000 cycles for a 1500 B packet). We also add 25% processing

overhead when moving �ows between cores due to cache

misses and the need for packet stealing.

Core scheduling. To evaluate how quickly eRSS adapts

to bursts, we generate a sequence of bursts with peak in-

tensities increasing to 35Gbps (Figure 3a), with a baseline

load of 4Gbps. Figure 3b shows that eRSS allocates cores

0

10

20

30

40

(a)

0

16

32

48

64

0

8

16

24

32

0 1 2 3 4 5

R
e
q
.
T
r
a
�
c
(
G
b
p
s
) eRSS-a

eRSS-c

RSS

C
o
r
e
s
A
l
l
o
c
a
t
e
d

(b)

D
e
e
p
e
s
t
Q
u
e
u
e
(
k
i
B
)

Time (ms)

(c)

Figure 3: eRSS reacts quickly to tra�c variations.

proportionally to the incoming load. Initially, eRSS starts

with the maximum number of cores—ensuring that su�-

cient cores are allocated while eRSS learns the throughput

characteristics of the scaling group.

We measure eRSS using two con�gurations: aggressive

(eRSS-a) and conservative (eRSS-c). eRSS-a allocates addi-

tional cores to ensure that each is running at < 90% capacity;

eRSS-c ensures that cores are running at < 75% capacity,

which results in more cores being allocated. As the tra�c

load decreases, eRSS correspondingly deallocates cores: it re-

moves cores rapidly to match the sharp drop in load, leaving

enough cores to ensure that all queues are drained.

Figure 3c shows, at every instant, the depth of the deepest

queue in our simulated system. We use the deepest queue’s

depth as a proxy for the tail latency added by queueing, and

therefore eRSS. eRSS has relatively higher queue sizes than

traditional RSS, because it both uses fewer cores to process

packets—traditional RSS uses all the available cores—and

adds transient workload imbalances when reallocating cores.

When adding and removing cores from the pool of active

cores, eRSS redistributes work across all cores, which re-

quires additional time to move data between cores. However,

the added short-term imbalance and data movement taper

o� after a few weight updates, and each core’s load stabilizes.

75

APNet ’19, August 17–18, 2019, Beijing, China A. Rucker et al.

0

1

0.2

0.4

0.6

0.8

0.1 1 10 100

C
D
F

Latency (µs)

eRSS-a

eRSS-c

RSS

Figure 4: eRSS’s 99th-percentile (tail) latencies, mod-
eled as a function of queuing delay.

0.7

0.8

0.9

1.0

0 2 4 6 8 10

C
D
F

Break Counts

eRSS-a

eRSS-c

Figure 5: How often eRSS moves �ows between cores.
Baseline RSS does not move �ows.

Tail latency. Modern cloud systems frequently have tail

latency targets of 100 µs [15]: if an application is performing

beyond its SLO, freeing up unused cores for backgroundwork

would provide signi�cant cost and energy savings. eRSS can

be adapted to maximally conserve resources while just barely
meeting latency constraints. Although eRSS uses fewer cores,

and therefore adds tail latency, the overall impact on tail

latency due to queuing (Figure 4) is bounded: our aggressive

eRSS-a policy adds only 3.3 µs more latency, a tiny fraction

of the total SLO. The conservative eRSS-c strategy also has

a far smaller tail latency increase of 0.8 µs, demonstrating

eRSS’s adaptability.

Runtime characteristics. Finally, packet stealing can

lead to poor performance due to reordering if �ows are bro-

ken too often [11]. Figure 5 shows the number of breaks

per �ow for eRSS: 75% of �ows are never broken, and over

90% of �ows are broken at most two times. Throughout this

evaluation, the periodic per-core weight updates are made

using a large proportional feedback coe�cient; this provides

fast convergence of consistent hashing at the cost of more

frequent updates. If we used a less aggressive strategy, or if

there were fewer workload spikes, then �ows would be bro-

ken less often—rapid changes in core counts require breaking

�ows to redistribute them.

5 SUMMARY & FUTUREWORK
With eRSS, we demonstrate that emerging NIC architectures

with new abstractions (e.g., map-reduce) can enable complex

scheduling techniques beyond just basic RSS. eRSS utilizes

specialized hardware resources, like match-action stages and

a map-reduce unit, to perform continuous workload esti-

mation, core allocation, and packet load-balancing with in-

frequent corrections from software. The resulting system

trades a minor increase in tail latency (while meeting SLOs)

for signi�cant gains in CPU e�ciency. eRSS builds on prior

work to achieve a line-rate packet and core scheduler that is

work conserving, dispersion tolerant, and CPU e�cient.

In-NICmachine learning. Advanced Machine Learning

(ML) could be used to enhance some of eRSS’s current esti-

mators. For example, ML could predict per-packet execution

time, replacing the current linear model. The NIC would

then independently detect heavy-tailed �ow distributions

and ensure that su�cient cores are allocated, allowing for

less over-provisioning and fewer NIC updates. This would

provide shorter stabilization times and minimize short-term

load imbalances.

Learned hyper-parameters. Another potential improve-

ment to eRSS is using Reinforcement Learning (RL) to opti-

mize eRSS’s hyper-parameters, such as the amount of over-

provisioning and the reaction time. These parameters are

currently statically optimized for a single scaling group;

a more dynamic system could take an SLO for each scal-

ing group as its only parameter. RL would then explore the

hyper-parameter space, �nding the minimal amount of over-

provisioning that meets the SLO. eRSS can thus learn cus-

tom policies that achieve better performance than general-

purpose solutions.

ACKNOWLEDGMENTS
We thank members of the Pervasive Parallelism Lab, Neeraja

Yadwadkar, and the anonymous APNet reviewers for their

valuable feedback that helped improve the quality of this

paper. This material is based on research sponsored by Air

Force Research Laboratory (AFRL) and Defense Advanced

Research Projects Agency (DARPA) under agreement num-

ber FA8650-18-2-7865. The U.S. Government is authorized to

reproduce and distribute reprints for Governmental purposes

notwithstanding any copyright notation thereon. The views

and conclusions contained herein are those of the authors

and should not be interpreted as necessarily representing the

o�cial policies or endorsements, either expressed or implied,

of AFRL and DARPA or the U.S. Government. This research

is also supported in part by a Herbert Kunzel Stanford Grad-

uate Fellowship and a�liate members and supporters of the

Stanford DAWN project: Ant Financial, Facebook, Google,

Infosys, Intel, Microsoft, NEC, Teradata, SAP and VMware.

76

Elastic RSS APNet ’19, August 17–18, 2019, Beijing, China

REFERENCES
[1] Memcached. https://memcached.org. Accessed on 04/30/2019.

[2] BlueField SmartNIC Ethernet. https://www.mellanox.com/products/

smartnic/, 2018. Accessed on 04/30/2019.

[3] Agilent Technologies. Mixed Packet Size Throughput.

https://s3.amazonaws.com/zanran_storage/www.ixiacom.com/

ContentPages/109218067.pdf.

[4] Belay, A., Prekas, G., Klimovic, A., Grossman, S., Kozyrakis, C.,

and Bugnion, E. IX: A Protected Dataplane Operating System for

High Throughput and Low Latency. In USENIX OSDI (2014).
[5] Bosshart, P., Gibb, G., Kim, H.-S., Varghese, G., McKeown, N., Iz-

zard, M., Mujica, F., and Horowitz, M. Forwarding Metamorphosis:

Fast Programmable Match-action Processing in Hardware for SDN. In

ACM SIGCOMM (2013).

[6] Dean, J., and Barroso, L. A. The Tail at Scale. Communications of
the ACM (Feb. 2013).

[7] Firestone, D., Putnam, A., Mundkur, S., Chiou, D., Dabagh, A.,

Andrewartha, M., Angepat, H., Bhanu, V., Caulfield, A., Chung,

E., et al. Azure Accelerated Networking: SmartNICs in the Public

Cloud. In USENIX NSDI (2018).
[8] Ibanez, S., Brebner, G., McKeown, N., and Zilberman, N. The P4-

>NetFPGA Work�ow for Line-Rate Packet Processing. In ACM/SIGDA
FPGA (2019).

[9] Jeong, E. Y., Woo, S., Jamshed, M., Jeong, H., Ihm, S., Han, D., and

Park, K. mTCP: A Highly Scalable User-Level TCP Stack for Multicore

Systems. In USENIX NSDI (2014).
[10] Jurkiewicz, P., Rzym, G., and Boryło, P. Flow Length and Size

Distributions in Campus Internet Tra�c. arXiv:1809.03486 (2018).
[11] Kaffes, K., Chong, T., Humphries, J. T., Belay, A., Mazières, D., and

Kozyrakis, C. Shinjuku: Preemptive Scheduling for µsecond-Scale
Tail Latency. In USENIX NSDI (2019).

[12] Maas, M., Harris, T., Asanovic, K., and Kubiatowicz, J. Trash Day:

Coordinating Garbage Collection in Distributed Systems. In USENIX
HOTOS (2015).

[13] Molnar, I. Modular Scheduler Core and Completely Fair Scheduler

(CFS). https://lwn.net/Articles/230501/. Accessed on 07/7/2019.

[14] Narayanan, D., Santhanam, K., Phanishayee, A., and Zaharia, M.

Accelerating Deep Learning Workloads through E�cient Multi-Model

Execution. In NIPS (2018).
[15] Ousterhout, A., Fried, J., Behrens, J., Belay, A., and Balakrishnan,

H. Shenango: Achieving High CPU E�ciency for Latency-sensitive

Datacenter Workloads. In USENIX NSDI (2019).
[16] Ousterhout, J., Gopalan, A., Gupta, A., Kejriwal, A., Lee, C., Mon-

tazeri, B., Ongaro, D., Park, S. J., Qin, H., Rosenblum, M., Rumble,

S., Stutsman, R., and Yang, S. The RAMCloud Storage System. ACM
TOCS (Aug. 2015).

[17] Prekas, G., Kogias, M., and Bugnion, E. ZygOS: Achieving Low Tail

Latency for Microsecond-Scale Networked Tasks. In ACM SOSP (2017).

[18] Schindelhauer, C., and Schomaker, G. Weighted Distributed Hash

Tables. In ACM SPAA (2005).

[19] Swamy, T., Rucker, A., Shahbaz, M., Yadwadkar, N., Zhang, Y., and

Olukotun, K. Taurus: An Intelligent Data Plane. https://p4.org/assets/

P4WS_2019/p4workshop19-�nal19v2.pdf. Accessed on 05/1/2019.

[20] Tu, S., Zheng, W., Kohler, E., Liskov, B., and Madden, S. Speedy

Transactions in Multicore In-Memory Databases. In ACM SOSP (2013).

[21] Wierman, A., and Zwart, B. Is Tail-Optimal Scheduling Possible?

Operations Research (Sept. 2012).

77

https://memcached.org
https://www.mellanox.com/products/smartnic/
https://www.mellanox.com/products/smartnic/
https://s3.amazonaws.com/zanran_storage/www.ixiacom.com/ContentPages/109218067.pdf
https://s3.amazonaws.com/zanran_storage/www.ixiacom.com/ContentPages/109218067.pdf
https://lwn.net/Articles/230501/
https://p4.org/assets/P4WS_2019/p4workshop19-final19v2.pdf
https://p4.org/assets/P4WS_2019/p4workshop19-final19v2.pdf

	Abstract
	1 Introduction
	2 Background & Related Work
	3 Design
	3.1 Fine-Grained Per-Packet Processing
	3.2 Coarse-Grained State Management
	3.3 Runtime Support & Optimizations

	4 Preliminary Evaluation
	5 Summary & Future Work
	Acknowledgments
	References

