
Hardware Acceleration of
Transactional Memory on
Commodity Systems

Jared Casper, Tayo Oguntebi,
Sungpack Hong, Nathan Bronson,
Christos Kozyrakis, Kunle Olukotun

Pervasive Parallelism Laboratory
Stanford University

1

TM Design Alternatives
  Software (STM)

  “Barriers” on each shared load and store update
data structures

  Hardware (HTM)
  Tap hardware data paths to learn of loads and

stores for conflict detection
  Buffer speculative state or maintain undo log in

hardware, usually at the L1 level
  Hybrid

  Best effort HTM falls back to STM
  Generally target small transactions

  Hardware accelerated
  Software runtime is always used, but accelerated
  Existing proposals still tap the hardware data path

2

TMACC: TM Acceleration
on Commodity Cores
  Challenges facing adoption of TM

  Software TM requires 4-8 cores just to break even
  Hardware TM is expensive and risky

  Sun’s Rock provides limited HTM for small transactions
  Support for large transactions requires changes to core
  Optimal semantics for HTM is still under debate

  Hybrid schemes look attractive, but still modify the core
  No systems available to attract software developers

  Accelerate STM without changing the processor
  Leverage much of the work on STMs
  Much less risky and expensive
  Use existing memory system for communication

3

TMACC: TM Acceleration
on Commodity Cores
  Conflict detection

  Can happen after the fact
  Can nearly eliminate expensive read barriers

  Checkpointing
  Needs access to core internals

  Version management
  Latency critical operations
  Common case when load is not in store buffer

must take less than ~10 cycles
  Commit

  Could be done off-chip, but would require
removing everything from the processor’s cache

4

Protocol Overview
  Reads

  Send address to HW
  Check for value in write buffer

  Writes
  Add to the write buffer
  Same as STM

  Commit
  Send HW each address in write set
  Ask permission to commit
  Apply write buffer

  Violation notification
  Must be fast to check for violation in

software

TMACC
HW Thread2

Read A

Read B
To write B

OK to
commit?

You’re
Violated

Yes

5

Thread1

Problem of Being Off-Core
  Variable latency to

reach the HW
  Network latency
  Amount of time in the

store buffer
  How can we determine

correct ordering? Read A

To write A

OK to
commit?

6

TMACC
HW Thread2 Thread1

OK to
commit?

Yes

Global and Local Epochs

A

 B

C C

B

A

  Global Epochs
  Each command embeds epoch number (a global variable).
  Finer grain but requires global state
  Know A < B,C but nothing about B and C

  Local Epochs
  Each thread declares start of new epoch
  Cheaper, but coarser grain (non-overlapping epochs)
  Know C < B, but nothing about A and B or A and C

Global Epochs Local Epochs

Epoch N Epoch N+1 Epoch N-1

7

Two TMACC Schemes
  We proposed two TM schemes.

  TMACC-GE uses global epochs
  TMACC-LE uses local epochs

  Trade-Offs

  Details in the paper

TMACC-GE TMACC-LE
More accurate conflict detection

 less false positives

No global data in software

 less SW overhead
Global epoch management

 more SW overhead
Less information for ordering

 more false positives

8

TMACC Hardware
  A set of generic BloomFilters + control logic

  BloomFilter: a condensed way to store ‘set’ information
  Read-set: Addresses that a thread has read
  Write-set: Addresses that other threads have written

  Conflict detection
  Compare read-address against write-set
  Compare write-address against read-set

9

  First implementation of FARM single node configuration
  From A&D Technology, Inc.
  CPU Unit (x2)

  AMD Opteron Socket F (Barcelona)
  DDR2 DIMMs x 2

  FPGA Unit (x1)
  Altera Stratix II, SRAM, DDR

  Each unit is a board
  All units connected via cHT backplane

  Coherent HyperTransport (ver 2)
  We implemented cHT compatibility for

 FPGA unit (next slide)

Procyon System

10

Base FARM Components

2MB
L3 Shared Cache

…

Hyper
Transport

2MB
L3 Shared Cache

Hyper
Transport

32 Gbps

32 Gbps
~60ns

AMD Barcelona

6.4 Gbps cHTCore™
Hyper Transport (PHY, LINK)

Altera Stratix II FPGA (132k Logic Gates)

Configurable
Coherent Cache

Data
Transfer Engine

Cache IF

Data Stream IF

TMACC MMR
IF

1.8G 
Core 0 
64K L1 

512KB 
L2 

Cache 

1.8G 
Core 3 
64K L1 

512KB 
L2 

Cache 

…
1.8G 
Core 0 
64K L1 

512KB 
L2 

Cache 

1.8G 
Core 3 
64K L1 

512KB 
L2 

Cache 

  Block diagram of Procyon system

  FPGA Unit = communication logics + user application

  Three interfaces for user application
  Coherent cache interface

  Data stream interface

  Memory mapped register interface

*cHTCore is from University of Heidelberg

11

FARM: A Prototyping Environment for Tightly-
Coupled, Heterogeneous Architectures. Tayo
Oguntebi et. al. FCCM 2010.

6.4 Gbps
~380ns

Communication
  Sending addresses

  FARM’s streaming interface
  Address range marked as “write-

combing” causes non-temporal store
  As close to “fire-and-forget” as is

available
  630MB/s

  Commit request
  Read from memory mapped register
  Approx. 700ns, 1000s of cycles!

  Violation notification
  FPGA writes to cacheable address
  Common case of no violation is fast,

just as cache hit for the processor

TMACC
HW Thread2

Read A

Read B
To write B

OK to
commit?

You’re
Violated

Yes

12

Thread1

Implementation Result
  Full prototype of both TMACC schemes on FARM
  HW Resource Usage

13

Common TMACC-GE TMACC-LE
4Kb BRAM 144 (24%) 256 (42%) 296 (49%)
Registers 16K (15%) 24K (22%) 24K (22%)
LUTs 20K 30K 35K
FPGA Altera Stratix II EPS130 (-3)
Max Freq. 100 MHz

Microbenchmark Analysis
  Two random array accesses

  Partitioned (non-conflicting)
  Fully-shared (possible

conflicts)

  Free from pathologies and 2nd-
order effects

  Decouple effects of parameters
  Size of Working Set (A1)
  Number of Read/Writes (R,W)
  Degree of Conflicts (C, A2)

Parameters: A1, A2, R, W, C

TM_BEGIN
 for I = 1 to (R + W) {
 p = (R / R + W)

 /* Non-conflicting Access */
 a1 = rand(0, A1 / N) + tid * A1/N;
 if (rand_f(0,1) < p))
 TM_READ(Array1[a1])
 else
 TM_WRITE(Array1[a1])

 /* Conflicting Access */
 if (C) {
 a2 = rand(0, A2);
 if (rand_f(0,1) < p))
 TM_READ(Array2 [a2])
 else
 TM_WRITE(Array2[a2])
 }
 }
TM_END 14

EigenBench: A Simple Exploration Tool
for Orthogonal TM Characteristics.
Sungpack Hong et. al. IISWC 2010

Microbenchmark Results

15

Working set size Transaction size
  The knee is overflowing the cache
  Constant spread out of speedup

  All violations are false positives
  Sharp decrease in performance

for small transactions
  TMACC-LE begins to suffer from

false positives

~10%

Microbenchmark Results

16

Write set size Number of threads
  TMACC-GE suffers from lock

migration as the number of
writes goes up

  Medium sized transactions
scale well

  Small transactions are not
accelerated

  TL2 suffers across chip
boundary

~22%
+76%

STAMP Benchmark Results

17

Vacation Genome

  Transactions with few conflicts, a lot of reads, and few writes
  Bread and butter of transactional memory apps
  Barrier overhead primary cause of slowdown in TL2

+85% +50%

STAMP Benchmark Results

18

K-means low K-means high
  Few reads per transaction

  Not much room for acceleration

  Large number of writes
  Hurts TMACC-GE

  Violations dominating factor
  Still not many reads to

accelerate

-8%

  Simulated processor greatly exaggerated
penalty from extra instructions
  Modern processors much more tolerant of

extra instructions in the read barriers
  Simulated interconnect did not model

variable latency and command
reordering
  No need for epochs, etc.

  Real hardware doesn’t have “fire-and-
forget” stores
  We didn’t model the write-combining buffer

  Smaller data sets looked very different
  Bandwidth consumption, TLB pressure, etc.

Prototype vs. Simulation

19

Summary: TMACC

  A hardware accelerated TM scheme
  Offloads conflict detection to external HW
  Accelerates TM without core modifications
  Requires careful thinking about handling latency

and ordering of commands

  Prototyped on FARM
  Prototyping gave far more insight than simulation.

  Very effective for medium-to-large sized
transactions
  Small transaction performance gets better with

ASIC or on-chip implementation.
  Possible future combination with best-effort HTM

20

Questions

21

