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TM Design Alternatives 
  Software (STM) 

  “Barriers” on each shared load and store update 
data structures 

  Hardware (HTM) 
  Tap hardware data paths to learn of loads and 

stores for conflict detection 
  Buffer speculative state or maintain undo log in 

hardware, usually at the L1 level 
  Hybrid 

  Best effort HTM falls back to STM 
  Generally target small transactions 

  Hardware accelerated 
  Software runtime is always used, but accelerated 
  Existing proposals still tap the hardware data path 
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TMACC: TM Acceleration 
on Commodity Cores 
  Challenges facing adoption of TM 

  Software TM requires 4-8 cores just to break even 
  Hardware TM is expensive and risky 

  Sun’s Rock provides limited HTM for small transactions 
  Support for large transactions requires changes to core 
  Optimal semantics for HTM is still under debate 

  Hybrid schemes look attractive, but still modify the core  
  No systems available to attract software developers 

  Accelerate STM without changing the processor 
  Leverage much of the work on STMs 
  Much less risky and expensive 
  Use existing memory system for communication 
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TMACC: TM Acceleration 
on Commodity Cores 
  Conflict detection 

  Can happen after the fact 
  Can nearly eliminate expensive read barriers 

  Checkpointing 
  Needs access to core internals 

  Version management 
  Latency critical operations 
  Common case when load is not in store buffer 

must take less than ~10 cycles 
  Commit 

  Could be done off-chip, but would require 
removing everything from the processor’s cache 
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Protocol Overview 
  Reads 

  Send address to HW 
  Check for value in write buffer 

  Writes 
  Add to the write buffer 
  Same as STM 

  Commit 
  Send HW each address in write set 
  Ask permission to commit  
  Apply write buffer 

  Violation notification 
  Must be fast to check for violation in 

software 

TMACC 
HW Thread2 

Read A 

Read B 
To write B 

OK to 
commit? 

You’re 
Violated 

Yes 
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Problem of Being Off-Core 
  Variable latency to 

reach the HW 
  Network latency 
  Amount of time in the 

store buffer 
  How can we determine 

correct ordering?  Read A 

To write A 

OK to 
commit? 
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TMACC 
HW Thread2 Thread1 

OK to 
commit? 

Yes 



Global and Local Epochs 

A 

     B 

C C 

B 

A 

  Global Epochs 
  Each command embeds epoch number (a global variable). 
  Finer grain but requires global state 
  Know A < B,C but nothing about B and C 

  Local Epochs 
  Each thread declares start of new epoch 
  Cheaper, but coarser grain (non-overlapping epochs) 
  Know C < B, but nothing about A and B or A and C 

Global Epochs Local Epochs 

Epoch N Epoch N+1 Epoch N-1 
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Two TMACC Schemes 
  We proposed two TM schemes. 

  TMACC-GE uses global epochs 
  TMACC-LE uses local epochs 

  Trade-Offs  

  Details in the paper 

TMACC-GE TMACC-LE 
More accurate conflict detection  

       less false positives  

No global data in software 

      less SW overhead  
Global epoch management 

       more SW overhead  
Less information for ordering 

      more false positives  
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TMACC Hardware 
  A set of generic BloomFilters + control logic 

  BloomFilter: a condensed way to store ‘set’ information 
  Read-set: Addresses that a thread has read 
  Write-set: Addresses that other threads have written 

  Conflict detection 
  Compare read-address against write-set 
  Compare write-address against read-set 
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  First implementation of FARM single node configuration 
  From A&D Technology, Inc. 
  CPU Unit (x2) 

   AMD Opteron Socket F (Barcelona) 
   DDR2 DIMMs x 2 

  FPGA Unit (x1) 
   Altera Stratix II, SRAM, DDR 

  Each unit is a board 
  All units connected via cHT backplane 

  Coherent HyperTransport (ver 2) 
  We implemented cHT compatibility for  

 FPGA unit (next slide) 

Procyon System 

10 



Base FARM Components 

2MB 
L3 Shared Cache 

… 

Hyper 
Transport 

2MB 
L3 Shared Cache 

Hyper 
Transport 

32 Gbps 

32 Gbps 
~60ns 

AMD Barcelona 

6.4 Gbps cHTCore™ 
Hyper Transport (PHY, LINK) 

Altera Stratix II FPGA   (132k Logic Gates) 


Configurable 
Coherent Cache 

Data  
Transfer Engine 

Cache IF 

Data Stream IF 

TMACC MMR 
IF 

1.8G 
Core 0 
64K L1 

512KB 
L2 

Cache 

1.8G 
Core 3 
64K L1 

512KB 
L2 

Cache 

… 
1.8G 
Core 0 
64K L1 

512KB 
L2 

Cache 

1.8G 
Core 3 
64K L1 

512KB 
L2 

Cache 

  Block diagram of Procyon system 

  FPGA Unit = communication logics + user application 

  Three interfaces for user application 
  Coherent cache interface 

  Data stream interface 

  Memory mapped register interface 

*cHTCore is from University of Heidelberg 
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FARM: A Prototyping Environment for Tightly-
Coupled, Heterogeneous Architectures.  Tayo 
Oguntebi et. al. FCCM 2010. 

6.4 Gbps 
~380ns 



Communication 
  Sending addresses 

  FARM’s streaming interface 
  Address range marked as “write-

combing” causes non-temporal store 
  As close to “fire-and-forget” as is 

available 
  630MB/s 

  Commit request 
  Read from memory mapped register 
  Approx. 700ns, 1000s of cycles! 

  Violation notification 
  FPGA writes to cacheable address 
  Common case of no violation is fast, 

just as cache hit for the processor 

TMACC 
HW Thread2 

Read A 

Read B 
To write B 

OK to 
commit? 

You’re 
Violated 

Yes 
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Implementation Result 
  Full prototype of both TMACC schemes on FARM 
  HW Resource Usage 
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Common TMACC-GE TMACC-LE 
4Kb BRAM 144 (24%) 256 (42%) 296 (49%) 
Registers 16K (15%) 24K (22%) 24K (22%) 
LUTs 20K 30K 35K 
FPGA Altera Stratix II EPS130 (-3) 
Max Freq. 100 MHz 



Microbenchmark Analysis 
  Two random array accesses 

  Partitioned (non-conflicting) 
  Fully-shared  (possible 

conflicts)  

  Free from pathologies and 2nd-
order effects 

  Decouple effects of parameters 
  Size of Working Set (A1) 
  Number of Read/Writes (R,W) 
  Degree of Conflicts (C, A2) 

Parameters: A1, A2, R, W, C 

TM_BEGIN 
  for I = 1 to (R + W) { 
      p = (R / R + W) 

       /* Non-conflicting Access */ 
       a1 = rand(0, A1 / N) + tid * A1/N; 
       if (rand_f(0,1) < p))  
              TM_READ( Array1[a1] ) 
        else 
              TM_WRITE( Array1[a1] ) 

        /* Conflicting Access */ 
        if (C) { 
             a2 = rand(0, A2); 
             if (rand_f(0,1) < p))  
                    TM_READ( Array2 [a2] ) 
             else 
                    TM_WRITE( Array2[a2] ) 
        } 
  } 
TM_END 14 

EigenBench: A Simple Exploration Tool 
for Orthogonal TM Characteristics. 
Sungpack Hong et. al. IISWC 2010 



Microbenchmark Results
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Working set size Transaction size 
  The knee is overflowing the cache 
  Constant spread out of speedup 

  All violations are false positives 
  Sharp decrease in performance 

for small transactions 
  TMACC-LE begins to suffer from 

false positives 

~10% 



Microbenchmark Results
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Write set size Number of threads 
  TMACC-GE suffers from lock 

migration as the number of 
writes goes up 

  Medium sized transactions 
scale well 

  Small transactions are not 
accelerated 

  TL2 suffers across chip 
boundary 

~22% 
+76% 



STAMP Benchmark Results 

17 

Vacation Genome 

  Transactions with few conflicts, a lot of reads, and few writes 
  Bread and butter of transactional memory apps 
  Barrier overhead primary cause of slowdown in TL2 

+85% +50% 



STAMP Benchmark Results 
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K-means low K-means high 
  Few reads per transaction  

  Not much room for acceleration 

  Large number of writes 
  Hurts TMACC-GE 

  Violations dominating factor 
  Still not many reads to 

accelerate 

-8% 



  Simulated processor greatly exaggerated 
penalty from extra instructions 
  Modern processors much more tolerant of 

extra instructions in the read barriers 
  Simulated interconnect did not model 

variable latency and command 
reordering 
  No need for epochs, etc. 

  Real hardware doesn’t have “fire-and-
forget” stores 
  We didn’t model the write-combining buffer 

  Smaller data sets looked very different 
  Bandwidth consumption, TLB pressure, etc. 

Prototype vs. Simulation 
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Summary: TMACC 

  A hardware accelerated TM scheme 
  Offloads conflict detection to external HW 
  Accelerates TM without core modifications 
  Requires careful thinking about handling latency 

and ordering of commands 

  Prototyped on FARM 
  Prototyping gave far more insight than simulation. 

  Very effective for medium-to-large sized 
transactions  
  Small transaction performance gets better with 

ASIC or on-chip implementation. 
  Possible future combination with best-effort HTM 
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Questions 
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