
Hardware Acceleration of Transactional
Memory on Commodity Systems

Jared Casper Tayo Oguntebi Sungpack Hong
Nathan G. Bronson Christos Kozyrakis Kunle Olukotun

Pervasive Parallelism Laboratory
Stanford University

{jaredc, tayo, hongsup, nbronson, kozyraki, kunle}@stanford.edu

Abstract
The adoption of transactional memory is hindered by the high
overhead of software transactional memory and the intrusive de-
sign changes required by previously proposed TM hardware. We
propose that hardware to accelerate software transactional mem-
ory (STM) can reside outside an unmodified commodity proces-
sor core, thereby substantially reducing implementation costs. This
paper introduces Transactional Memory Acceleration using Com-
modity Cores (TMACC), a hardware-accelerated TM system that
does not modify the processor, caches, or coherence protocol.

We present a complete hardware implementation of TMACC
using a rapid prototyping platform. Using this hardware, we im-
plement two unique conflict detection schemes which are accel-
erated using Bloom filters on an FPGA. These schemes employ
novel techniques for tolerating the latency of fine-grained asyn-
chronous communication with an out-of-core accelerator. We then
conduct experiments to explore the feasibility of accelerating TM
without modifying existing system hardware. We show that, for all
but short transactions, it is not necessary to modify the processor
to obtain substantial improvement in TM performance. In these
cases, TMACC outperforms an STM by an average of 69% in ap-
plications using moderate-length transactions, showing maximum
speedup within 8% of an upper bound on TM acceleration. Over-
all, we demonstrate that hardware can substantially accelerate the
performance of an STM on unmodified commodity processors.

Categories and Subject Descriptors C.1.4 [Processor Architec-
tures]: Parallel—Distributed Architectures

General Terms Algorithms, Design, Performance

Keywords Transactional Memory, FPGA, Hardware Acceleration

1. Introduction
Transactional memory (TM) [19, 23] is a potential way to simplify
parallel programming. Ideally, TM would allow programmers to
make frequent use of large transactions and have them perform
as well as highly optimized fine-grain locks. However, this ideal
cannot be realized until there are real systems capable of executing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ASPLOS’11, March 5–11, 2011, Newport Beach, California, USA.
Copyright c© 2011 ACM 978-1-4503-0266-1/11/03. . . $10.00

large transactions with low overhead. Our aim in this paper is to
describe a TM system that strikes a reasonable balance between
performance, cost and system implementation complexity.

Researchers have proposed a wide variety of TM systems. There
are systems implemented completely in hardware
(HTMs), completely in software (STMs), and more recently, sys-
tems with both hardware and software components (hybrid TMs).
To put our contributions in context, we now briefly review the
strengths and weaknesses of the various TM design alternatives.

1.1 TM Design Alternatives and Related Work
STM
Software transactional memory (STM) systems [15, 18, 25, 31, 32,
36] replace the normal loads and stores of a program with short
functions (“barriers”) that provide versioning and conflict detec-
tion. These transactional read and write barriers must themselves be
implemented using the low-level synchronization operations pro-
vided by commodity processors. The barriers can be inserted au-
tomatically by a transaction-aware compiler [1, 2, 39] or managed
runtime [31], added by a dynamic instrumentation system [28], or
invoked manually by the programmer. STMs increase the number
of executed instructions, perform extra loads and stores, and re-
quire metadata that takes up cache space and needs to be synchro-
nized. The resulting inherent performance penalty means that de-
spite providing good scalability, most STMs fall far short of the
performance offered by hardware-based approaches to TM. There
have been proposals that reduce the overhead required [39], but
they do so by giving up on the promise of TM–they require small
transactions that are used rarely. Hence, using these STMs is as
difficult as using fine-grain locks. As a result of these limitations,
STMs have been largely constrained to the domain of research [9].

HTM
At the opposite end of the spectrum from STM is hardware trans-
actional memory (HTM) [4, 5, 11, 17, 24, 29]. HTM systems elim-
inate the need for software barriers by extending the processor or
memory system to natively perform version management and con-
flict detection entirely in hardware, allowing them to demonstrate
impressive performance. Version management in an HTM is per-
formed by either buffering speculative state (typically in the cache
or store buffer) or by maintaining an undo log. Metadata that al-
lows conflict detection is typically stored in Bloom filters (signa-
tures) or in bits added to each line of the cache. The close syn-
ergy of the hardware with the processor core and cache allow these
systems to provide very high levels of performance; however this
tight relationship causes the system to be inflexible and more costly.
Recent advances in HTM design address both of these problems

2 4 8 16

of Processors

0

1

2

3

4

5

6

7

Si
m

ul
at

ed
 S

pe
ed

up

SigTM
TMACC-L1
TMACC-MEM
TL2

Figure 1. Average (mean) performance on the STAMP suite of two sim-
ulated TMACC systems, one two cycles away from the core (L1) and one
two hundred cycles away (MEM). These are compared to TL2, a pure STM,
and an in-core hybrid TM system much like SigTM.

by minimizing the coupling between the TM and the processor
core [33, 40], but even decoupled HTM designs introduce non-
trivial design complexity and disturb the delicate control and data
paths in the processor core. The first-level cache has the effect of
hiding loads and stores from the outside world, making it impossi-
ble to construct an out-of-core pure HTM system. Previous studies
have not explored the possibility of adding transactional accelera-
tion hardware without modifying a commodity processor core.

HybridTM
One way of limiting the complexity required by an HTM is to pro-
vide a limited best-effort HTM that falls back to an STM if it is
unable to proceed [12, 14, 20, 22, 38]. These systems are particu-
larly well-suited for supporting lock-elision and small transactions.
However, applications that use large transactions (or cannot tune
their transactions to avoid capacity and associativity overflows) will
find that they derive no benefit. This approach is especially prob-
lematic as the research community explores transactional memory
as a programming model, since it prescribes a limit on how trans-
actions may be used efficiently.

Hardware Accelerated STM
Hardware accelerated STMs are a type of hybrid TM that use dedi-
cated hardware to improve the performance of an STM. This hard-
ware typically consists of bits in the cache or signatures that ac-
celerate read set tracking and conflict detection. Existing proposals
extend the instruction set to control new data paths to the TM hard-
ware. Explicit read and write barriers then use the TM hardware to
accelerate conflict detection and version management [7, 30, 34].

1.2 TMACC Motivation
We observe that hardware acceleration of an STM’s barriers only
requires that the runtime be able to communicate with the hard-
ware; the TM hardware need not be part of the core or connected
to the processor with a dedicated data path. Commodity processors
are already equipped with a network that provides high bandwidth,
low latency, and dedicated instructions for communication: the co-
herence fabric. This leads to the unexplored design space of hard-
ware accelerated TM systems that do not modify the core, or Trans-
actional Memory Acceleration using Commodity Cores (TMACC).
Early simulation results, presented in Figure 1, show the promising
potential of TMACC systems to perform within five to ten percent
of an in-core hybrid TM system. These results also suggest that
much of that performance can be realized despite a relatively large
latency between the processing cores and the TMACC hardware.

Keeping the hardware outside of the core maintains modularity,
allowing architects to design and verify the TM hardware and pro-
cessor core independently. This significantly reduces the cost and

risk of implementing TM hardware and allows designers to migrate
a core design from one generation to the next while continuing to
provide transactional memory acceleration.

There is therefore great benefit in exploring TM systems that
can be feasibly constructed using commodity processors. Such
systems will allow researchers to:
1. better understand and fine-tune TM semantics using real hard-

ware and large applications
2. explore the extent of speedup and hardware acceleration possi-

ble without modifying the processor core
3. better understand the issues associated with tolerating the la-

tency of out-of-core hardware support for TM
To derive these benefits in this paper, we describe the design

and implementation of a hardware accelerated TM system, imple-
mented with commodity processor cores. Like the accelerators pre-
sented in systems like FlexTM [33], BulkSC [10], LogTM-SE [40],
and SigTM [7], we use Bloom filters as signatures of a transaction’s
read and write sets. Unlike these previous proposals, our Bloom
filters are located outside of the processor and require no modifi-
cations to the core, caches, or coherence protocol. In this paper we
also address the non-trivial challenges encountered when the accel-
eration hardware is moved out of the core.

The major contributions of this paper are:

• We present a system (both software and hardware) for Transac-
tional Memory Acceleration using Commodity Cores (TMACC).
We detail two novel algorithms for transactional conflict detec-
tion, both of which employ general purpose out-of-core Bloom
filters. (Section 3).

• We describe two techniques for tolerating the latency of fine-
grained asynchronous communication with an out-of-core ac-
celerator (Section 2).

• We construct a complete hardware implementation of TMACC
using FARM [27], a rapid prototyping platform. We also shed
light on practical intuition gained regarding issues one must
consider when adding TM acceleration hardware (Section 2.3).

• We demonstrate the potential of TMACC by evaluating our im-
plementation using a custom microbenchmark and the STAMP
benchmark suite. We show that, for all but short transactions,
it is not necessary to modify the processor to obtain substan-
tial improvement in TM performance. TMACC outperforms an
STM by an average of 69%, showing maximum speedup within
8% of an upper bound on TM acceleration (Section 4).

The rest of the paper is structured as follows: Section 2 intro-
duces our overall approach, details our hardware platform and TM
acceleration modules on the FPGA, and describes techniques to
mitigate the high communication latencies between the cores and
the out-of-core hardware. Section 3 describes the TM schemes we
propose and explains how the hardware is utilized in these schemes.
Section 4 presents the results of experiments using our microbench-
mark and the STAMP suite and projects the performance of an
ASIC TMACC implementation. Finally, Section 5 concludes.

2. Accelerating TM
In this section we present our system for Transactional Memory
Acceleration using Commodity Cores, or TMACC. We first give a
high level overview of our design decisions and describe our gen-
eral use of Bloom filters. We then briefly introduce our experimen-
tation vehicle, the FARM prototyping platform. We follow with a
more detailed description of our Bloom filter hardware, which is
general and flexible enough to be placed anywhere in the system.
We describe how we implement this hardware using FARM. Finally
we present techniques to tolerate the command reordering encoun-
tered while communicating with off-chip acceleration hardware.

…

1.8GHz
Core 0
64K L1

512KB
L2 Cache

2MB
L3 Shared Cache

512KB
L2 Cache

…

Hyper
Transport

512KB
L2 Cache

2MB
L3 Shared Cache

512KB
L2 Cache

Hyper
Transport

32 Gbps

32 Gbps

1.8GHz
Core 3
64K L1

1.8GHz
Core 4
64K L1

1.8GHz
Core 7
64K L1

AMD Barcelona ~60 ns
6.4 Gbps

6.4 Gbps cHTCore™
Hyper Transport (PHY, LINK)

Altera Stratix II FPGA (132k Logic Gates)

Configurable
Coherent Cache

Data Transfer Engine

Cache Interface

Data Stream Interface

User ApplicationMMR

 ~380 ns

Figure 2. Diagram of system topology on the FARM platform.

In any TM system, the processor must have very low latency
access to transactionally written data while hiding that data from
other executing threads. Performing this version management in
hardware and being able to promptly return speculatively written
data would almost certainly require modification of the L1 data
cache or the data path to that cache. Previously proposed HTM
systems use buffers next to the L1, or the L1 itself, to store this
speculative data until the transaction commits. Imposing out-of-
core latencies on these accesses would significantly degrade per-
formance. We therefore conclude that performing hardware-based
or hardware-assisted version management in a TMACC system is
impractical.

To address this issue of version management, our software run-
time uses a heavily optimized chaining hash table as a write buffer.
A transactional write simply adds an address/data pair to this hash
table. Each transactional read must first check for inclusion of the
address in the write buffer. If it is present the associated data is
used; otherwise, a normal load is performed. The hash table is op-
timized to return quickly in the common case where the key (the
address) is not in the table. Once the transaction has been val-
idated and ordered (i.e. given permission to commit), the write
buffer is walked and each entry applied directly to memory. The
details of our implementation are out of the scope of this paper
as write buffer data structures are more thoroughly explored else-
where [13, 15, 25, 31].

Application of the write buffer could potentially be performed
by the TMACC hardware, freeing the processor up to continue on
to the next transaction. However, initial experiments showed that
any benefit is outweighed by the impact of reloading the data into
processor’s cache after application of the write buffer. This is an
area of potential future work.

Like version management, checkpointing the architectural state
at the beginning of a transaction and restoring that state upon
rollback would require significant modification to the processor
core in order to be effectively and efficiently handled in hardware.
We thus perform this entirely within the software runtime using the
standard sigsetjmp() and longjmp() routines.

This leaves conflict detection as the best target for out-of-core
hardware acceleration. After all, the speculative nature of an opti-
mistic TM system means that the latency of the actual detection of
conflicts is not on the critical path. Conflict detection is a primary
contributor to execution overhead in STM systems, and many STM
proposals have attempted to improve it.

In this work, we present two novel methods for performing con-
flict detection, both of which use Bloom filters as signatures of a
transaction’s read and write set. Bloom filters [3] have been shown
to be an effective data structure for holding sets of keys with very
low overhead and have been used for multiple applications, includ-
ing the acceleration of transactional memory [7, 10, 36, 40]. Like

several other TM proposals, TMACC uses Bloom filters to encode
the read and write sets of running transactions. When a transac-
tion commits, each address that is written can be quickly checked
against the read and write sets of other concurrent transactions in
order to discover conflicts. Details of the TM algorithm can be
found in Section 3. The TMACC system presented in this work
assumes a lazy optimistic STM. There are no fundamental reasons,
however, why TMACC could not be used to accelerate an eager
pessimistic system. We have a working draft of such a scheme, but
do not present it in this paper.

2.1 FARM Prototyping Platform
In order to fully qualify a TMACC design, we needed a platform
which would allow for easy experimentation with real applications.
Due to its performance and flexibility, the FARM system [27]
represents such a platform. FARM features an FPGA coherently
connected to two commodity CPUs and physically interconnected
through a backplane via HyperTransport. Figure 2 shows a diagram
of its topology. As shown in the figure, FARM provides two logical
interfaces for communication with the CPU: a) a coherent interface
which uses cache lines managed by the coherence protocol and b)
a data stream interface which provides streaming (or “fire-and-
forget”) non-coherent communication. For brevity, we omit the
implementation and performance details of the system and refer
the reader to the paper on FARM [27] for this information.

2.2 Bloom filters
Figure 3 presents a block diagram of a collection of Bloom fil-
ters. Note that while logic symbols are used, Figure 3 does not
represent a physical implementation, but a logical diagram of the
functionality provided. In addition to the normal add, clear, and
query operations, each individual Bloom filter provides function-
ality to copy bits in from another filter or broadcast out its bits to
other filters. Each Bloom filter also has a tag associated with it,
which can be used, for example, to associate a Bloom filter with
a particular thread of execution. Programmability of the module is
achieved in the control block, which can be programmed to trans-
late high level application-specific operations to the low level oper-
ations (add, query, clear, copy in, and copy out) sent to each indi-
vidual Bloom filter. These operations can potentially be predicated
by the tag hit and tag gt signals.

On FARM, the Bloom filters are placed in the placeholder
marked “User Application” in Figure 2. We use four randomly
selected hash functions from the H3 class [8]. We considered using
PBX hashing [41], which is optimized for space efficiency, but
we were not constrained by logic resources on the FPGA. We
perform copying by stepping through the block ram word by word.
In order to reduce the number of cycles needed to copy, filters
requiring copy support use additional RAM blocks to widen the

data

addr

wren

req

ack

Control

...

Filter 0

Filter 1

Filter 2

Filter n

Filters
Hashes

copy_data

bits_in

= >
tag_gt

tag_hit

clear

query

copy_in

copy_in_data
bits_in

hit

copy_out_data

copy_out

tag_in

tag_we

we

Figure 3. Logical block diagram of Bloom filters.

Epoch Epoch

N

Epoch

N+1N−1

Local EpochsGlobal Epochs

A

B

C

A

B

C

Figure 4. To determine the ordering of events, time is divided into epochs, either globally or locally. In the global epochs example, it is known that A comes
before B and C, but not the relative ordering of B and C. In the local case, it is known that C comes before B, but not the ordering of A and B or A and C
because their epochs overlap.

interface, resulting in more logic cells for the datapaths. All filters
are logically 4 Kbits in size.

Software communicates with the Bloom filters using the mem-
ory subsystem, which is the fastest (both highest bandwidth and
lowest latency) I/O path to and from a commodity processor
core. Uncached “fire-and-forget” stores can be used to send asyn-
chronous commands to the filters, such as a request to add an ad-
dress to a transaction’s read set. FARM’s data stream interface
provides similar functionality; however, its Barcelona processors
are not able to perform true fire-and-forget stores. Instead, “write-
combining” memory is used to provide a way to stream data to
the FPGA with minimal impact on the running processor [27]. The
Bloom filter hardware performs commands serially in the order
they are received by the FPGA. The implementation is pipelined,
allowing the filters to easily process all incoming commands even
when the link is fully saturated.

For asynchronous responses, such as a filter match notification
indicating a conflict between transactions, the filters use FARM’s
coherent interface to store a message in a previously agreed upon
memory location, or mailbox[26]. The application receives notifi-
cation of Bloom filter matches (i.e. conflicts) by periodically read-
ing this mailbox. In the common case of no conflicts, this check is
very cheap as it consists of a read that hits the processor’s L1 cache.

Using out-of-core Bloom filters that communicate using the
memory system allows us to easily perform virtualization. The soft-
ware runtime maintains the pool of Bloom filters, explicitly man-
aging the binding between software threads and hardware filters.
Issues such as interrupt handling, context switching, and thread
migration are thus transparent to the acceleration hardware. If the
hardware were added to the processor core, these issues would be-
come much more complex and expensive, as the core would be
physically tied to a specific Bloom filter.

2.3 Tolerating command reordering
For many applications, like TM, that require fine-grained (frequent)
communication between the processor and an accelerator, asyn-
chronous communication is essential for performance. When using
fully asynchronous communication to out-of-core devices, how-

ever, it is incorrect to assume that commands are received by the
accelerator in the same order they were dispatched from the proces-
sors. Consider the following example: One processor sends a com-
mand to add an address to a transaction’s read set; this command
stalls in the processor’s write-combining buffer. Later, a commit-
ting transaction on another processor sends notification that it is
writing to that same address. This notification arrives immediately
(before the preceding add to read set by the first processor) and
thus the conflict is missed because the FPGA sees the commit no-
tification and the add to the read set command in reverse order.
To avoid the performance penalty of a more synchronous commu-
nication scheme (e.g. an mfence after each command), accelera-
tors such as those in TMACC must therefore reason about possible
command reorderings.

To address this serious issue, we present epoch-based reason-
ing and apply the technique to our Bloom filter accelerators. In this
scheme, we split time into variable sized epochs, either locally de-
termined (local epochs) or globally agreed upon (global epochs).
Global epochs can be implemented using a single shared counter
variable that is atomically incremented when a thread wants to
move the system into a new epoch. To inform the accelerator of
the epoch in which a command is executed, the epoch counter,
which will usually be in the L1 cache, is read and included in the
command. The accelerator then compares the epochs of commands
to determine a coarse ordering, with the atomic increment provid-
ing the necessary happens-before relationship between threads. The
accelerator cannot determine the ordering of commands with the
same epoch number, since it may only assume the commands were
fired at some point during the epoch (see Figure 4). Thus, the gran-
ularity of epoch changes determines the granularity at which the
accelerator is able to determine ordering.

The potentially high overhead of maintaining a single global
counter can be eliminated by using epochs local to each thread.
When a thread wants to move into a new local epoch, it sends a
command to the accelerator to inform it of an epoch change and
performs a memory fence to ensure any command tagged with the
new epoch number happens after the accelerator sees the epoch
change. The epoch change command can often be included in an

Function Description
HW AddToReadSet(tid,

reference, epoch)

Asynchronously adds reference to tid’s read set and enables notification for any write that could
possibly make this read inconsistent. Queries each write set that has an epoch number less than or
equal to epoch for reference, triggering a conflict in tid if a match is found or if epoch is less than
the epoch of the oldest write set.

HW WriteNotification(tid,

reference, epoch)

Asynchronously queries all reads sets, except tid’s, and triggers a conflict in any transaction
whose read set includes reference. Adds reference to the write set for epoch epoch, clearing
and replacing an old epoch’s write set if necessary.

HW AskToCommit(tid) Synchronously processes all outstanding commands and returns the conflict status of tid.

Table 1. TMACC hardware functions used by TMACC-GE.

Algorithm 1 Pseudocode for the TMACC-GE runtime.

procedure WRITEBARRIER(tid, ptr, val)
AddToWritebuffer(tid.wb, val)

procedure READBARRIER(tid, ptr)
HW AddToReadSet(tid, ptr, global epoch)
if WritebufferContains(tid.wb, ptr) then

return WritebufferLookup(tid.wb, ptr)
WaitForFreeLock(ptr)
Return ∗ptr

procedure COMMIT(wb)
AcquireLocksForWB(wb)
epoch = global epoch
if (violation mailbox[wb.tid] == true) then return failure
for entry in wb do

HW WriteNotification(wb.tid, entry.address, epoch)
violated = HW AskToCommit(wb.tid) . Synchronous
if violated then ReleaseLocks(); return failure
for entry in wb do *(entry.address) = entry.specData

AtomicIncrement(global epoch)
ReleaseLocks()
return success

existing synchronous command with low cost. While this scheme
has less overhead, it leaves the accelerator with less information
about the ordering of events. Like the global scheme, the accelera-
tor may only assume the command was fired at some point during
the epoch; therefore the relative ordering of commands from differ-
ent threads can only be determined if their epochs do not overlap,
as illustrated in Figure 4.

3. Algorithm Details
We propose two different transactional memory algorithms in this
paper: one using global epochs (TMACC-GE) and one using local
epochs (TMACC-LE). In both of these schemes, a filter match
represents a conflict that requires a transaction to abort, and a
pre-set mailbox is used to notify the STM runtime. Both schemes
provide privatization safety. Publication safety could be provided
by constraining the commit order as in an STM; we don’t expect
TMACC to make this either easier or harder.

When using Bloom filters to perform conflict detection, an im-
portant decision is what logical keys are put into the Bloom filter to
designate a shared variable. This decision determines the granular-
ity at which conflicts are detected. In our systems, we simply use
the virtual address of the shared variable as the key (later referred
to as a reference). For structures and arrays, each unique word is a
separate shared variable. An object identifier or something similar
could be also be used as a reference.

3.1 Global Epochs
In the global epoch scheme, the Bloom filters are split into two
banks. One bank maintains the read set for each active transaction

in the system. Each read set holds the references read during the ex-
ecution of the associated transaction. The other bank contains filters
which hold the write set for a given epoch; the write set is composed
of writes that were performed by any transaction during that epoch.
The Bloom filter tags are used to determine which Bloom filter in
this bank corresponds to what epoch. When the filters receive a
HW AddToReadSet , the reference is added to the transaction’s
read set and checked against the write set for the given and all pre-
vious epochs. A conflict is signalled on any match, thus ensuring a
match against any write that could have occurred prior to the read.
When the filters receive a HW WriteNotification , the reference
is added to the given epoch’s write set and checked against each
transaction’s read set, ensuring that any read that could possibly
come after, or has come after, the associated write will signal a con-
flict. In the case that there is not a filter currently associated with the
epoch of a HW WriteNotification , and the epoch is greater than
the oldest epoch for which a filter exists (i.e. this is a new epoch),
the write set filter of the oldest epoch is cleared and replaced with
a new write set containing the address to be added (and tagged
with the new epoch number). If no filter exists for the epoch in
either a HW WriteNotification or a HW AddToReadSet , and
the epoch is older than the oldest epoch for which a write set exists,
then the command comes from an epoch that is too old to have a
filter and conservatively triggers a conflict. Since the ordering of
reads and writes within the same epoch cannot be determined, this
scheme has the effect of logically moving all reads to the end of the
epoch in which they are performed and all writes to the beginning.
These operations are summarized in Table 1.

Algorithm 1 gives high level pseudo-code for the algorithm used
by the TMACC-GE software runtime. Each read is instrumented
to inform the Bloom filters of the reference being read. Since
the command is asynchronous, the only per read barrier cost of
doing conflict detection is the cost of firing off the command to
the FPGA. To commit the transaction, the runtime first acquires
locks for each address in its write buffer, using a similar low-
overhead striped locking technique as TL2 [15]. To ensure that all
of its writes are assigned to the same epoch, a local copy of the
global epoch counter is stored and used to inform the hardware
of all the references that are about to be committed. Locks are
necessary to ensure that any readers of partially committed state
perform the read in the same epoch as the commit. Without them,
the epoch could be incremented and a read of a partial commit
performed in the following epoch. This read would (incorrectly)
not be flagged as a conflict. Once all of the locks are obtained,
the running transaction must synchronize with the filters to ensure
that it has not been violated up until the point the filters perform
the HW AskToCommit operation. If the transaction read a value
that had been committed in the current or any previous epoch, either
the HW WriteNotification would have matched on the read set
and triggered a conflict, or the HW AddToReadSet would have
matched against one of the epoch’s write sets. Therefore, when the
HW AskToCommit is performed on the FPGA, the transaction’s

Function Description
HW AddToReadSet(tid,

reference)

Asynchronously adds reference to tid’s read set, and enables notification for any write that could
possibly make this read inconsistent. Queries tid’s missed set and the write set for every other
transaction for reference, triggering a conflict in tid on a match.

HW WriteNotification(tid,

reference, epoch)

Asynchronously queries all reads sets except tid’s, triggering a conflict in transactions whose read set
includes reference. Adds reference to tid’s read set and to epoch’s write set.

HW ClearMissedSet(tid) Asynchronously clears tid’s missed set, moving this transaction to a new local epoch.
HW ClearWriteSet(tid) Asynchronously copies the content of tid’s write set into every other transaction’s missed set, then

clears the write set.
HW AskToCommit(tid) Synchronously processes all outstanding commands and returns the conflict status of tid. Clears tid’s

read and missed set in preparation for a new transaction.

Table 2. TMACC hardware functions used by TMACC-LE.

Algorithm 2 Pseudocode for the TMACC-LE runtime.

procedure WRITEBARRIER(tid, ptr, val)
AddToWritebuffer(tid.wb, val)

procedure READBARRIER(tid, ptr)
HW AddToReadSet(tid, ptr)
if WritebufferContains(tid.wb, ptr) then

return WritebufferLookup(tid.wb, ptr)
if TimeForNewLocalEpoch() then

HW ClearMissedSet(tid); mfence
Return ∗ptr

procedure COMMIT(wb)
for entry in wb do

HW WriteNotification(wb.tid, entry.address)
violated = HW AskToCommit(wb.tid) . Synchronous
if violated then return failure
for entry in wb do *(entry.address) = entry.specData

HW ClearWriteSet(wb.tid)
return success

read set is coherent and consistent if no conflict has been seen by
the FPGA. The transaction is then placed in the global ordering of
transactions on the system and allowed to apply its write buffer to
memory. Once the write buffer has been applied, the transaction
atomically increments the global epoch counter so that any thread
that reads the newly committed value will read it in the new epoch
and not be violated. It then releases the locks and returns.

It is important to note that the locks used in TMACC-GE are
simple mutex locks only used to ensure the atomicity of a commit,
not the versioned locks used for conflict detection in TL2. TMACC-
GE can thus use coarser grain locking than TL2. We found that 216

locks is idle for TMACC-GE, while TL2 performs best with 220.

3.2 Local Epochs
To perform conflict detection using local epochs, each transaction
is assigned three filters: a read set, a write set, and a missed set.
As before, the read set maintains the references read during the
transaction. The write set holds references that are currently being
committed by a transaction, and the missed set holds references
committed by any other transaction during the local epoch. When
a filter receives a HW AddToReadSet , the reference is checked
against all other transactions’ write sets and the reading transac-
tion’s missed set, ensuring that any write that could have occurred
before the associated read (i.e. in the current local epoch) will trig-
ger a conflict. A HW WriteNotification causes the reference to
be added to the transaction’s write set and checked against all other
transactions’ read sets, ensuring a conflict will be triggered for any
read that could have potentially seen the result of the correspond-
ing write. The written reference is also added to the transaction’s
read set, preventing write-write conflicts which cause a race during

write buffer application. Finally, HW ClearWriteSet first copies
(merges) the write set into all other missed sets and then clears
the write set. This allows each transaction to independently decide
when it no longer needs to consider missed writes as potentially
conflicting. The transaction does this with HW ClearMissedSet
which clears its own missed set, effectively moving it into a new lo-
cal epoch. HW WriteNotification could add references directly
to the other transaction’s missed sets, but having the intermediate
step of using the local write set allows the transaction to abort a
commit without polluting the other missed sets.

Algorithm 2 gives high level pseudo-code for the algorithm
used by the TMACC-LE software runtime. The main difference in
this software runtime, as compared to TMACC-GE, is the absence
of locks during commit. Locks are not needed when using local
epochs because the missed sets cause all of the writes performed
during a commit to be logically moved to the beginning of an epoch
defined locally for each transaction, not globally. Therefore, each
transaction individually ensures that any of its own reads of a partial
commit will signal a conflict, an effort which won’t be frustrated by
the update of a global epoch outside of the transaction’s control.

In the local epoch scheme, an epoch is implicitly defined by
what writes are contained in the transaction’s missed set filter; thus
no explicit local epoch counter is needed. In addition to firing
a HW AddToReadSet and locating the correct version of the
datum, read barriers may choose to begin a new local epoch by
sending a HW ClearMissedSet command. A memory fence is
then used to ensure that any subsequent read (and its corresponding
HW AddToReadSet) must wait until the HW ClearMissedSet
is complete and a new missed set has begun to collect writes
performed in the new epoch. This eliminates the possibility that
a conflicting read is performed during a local epoch update and
the conflict lost. Periodically incrementing the local epoch is not
necessary for correct operation but reduces the number of false
conflicts and is especially important in applications using long-
running transactions.

4. TMACC Performance Evaluation
In this section, we present the performance and analysis of the
TMACC-GE and -LE architectures implemented on FARM. We
present the performance results in two parts. First, we present
results from a microbenchmark that is used to explore the full
range of TM application parameters. Second, we present results
of full applications from the STAMP benchmark suite [6]. We
show where the STAMP applications fit into the design space as
characterized by the microbenchmark parameters and how these
parameters explain the performance results. Finally, we project the
performance of an ASIC TMACC implementation.

Algorithm 3 Pseudocode for microbenchmark.
static int gArray1[A1];
static int gArray2[A2];
procedure UBENCH(A1, A2, R, W , T , C, N , tid)

probrd = R/(R+W);
for t = 1 to T do

TM BEGIN();
for j = 1 to (R+W) do

do read = random(0,1) ≤ probrd ? true : false;
addr1 = random(0,A1/N) + tid*A1/N ;

. addr1 does not conflict with others
if do read then

TM READ(gArray1[addr1]);
else

TM WRITE(gArray1[addr1]);
if C == true then

addr2 = random(0,A2);
. addr2 possibly conflicts with others

if do read then
TM READ(gArray2[addr2]);

else
TM WRITE(gArray2[addr2]);

TM END();

4.1 Microbenchmark Analysis
In order to characterize the performance of TMACC-LE and
TMACC-GE, we used an early version of EigenBench [21] which
is a simple synthetic microbenchmark specially devised for TM
system evaluation. This microbenchmark has two major advantages
over a benchmark suite composed of complex applications. First,
transactional memory is a complex system whose performance is
affected by several application parameters. The microbenchmark
makes it simple to isolate the impact of each parameter, indepen-
dently from the others. Second, a microbenchmark allows us to get
a theoretical upper bound on the best possible performance given
a set of parameters. We arrive at this bound by simply executing
a multi-threaded trial run without the protection of transactional
memory or locking. Doing this with a real application would al-
most certainly produce incorrect results. We call this unattainably
good performance the “unprotected” version.

Algorithm 3 shows the pseudocode for the microbenchmark.
The algorithm, at the core, is nothing more than multiple threads
executing a random set of array accesses. Several parameters are
necessary: A1 and A2 are the sizes of two arrays, the first a par-
titioned array for non-conflicting accesses, the second a smaller
shared array for conflicting accesses; R and W are, respectively,
the average number of reads and writes, per transaction; T is the
number of transactions executed per thread; N is the number of
threads; and C is a flag determining whether or not conflicting ac-
cesses should be performed. Note that if C is unset, there should
be no violations since every thread only accesses its partition of the
array. If C is set, then the shared A2 array is accessed in addition
to the normal accesses to A1, decoupling the working set size and
the read/write ratio from the probability of violation.

We now use the microbenchmark to evaluate the performance of
our two TMACC systems across several different variables. Table 3
shows the parameter sets used in the study, and the performance
results are displayed in Figure 5. All graphs in this section show
both speedup relative to sequential execution with no locking or
transactional overhead (solid lines) and the percentage of started
transactions that were violated (dotted lines). In all graphs except
for (e), speedup is shown for 8 threads.

Throughout our analysis, the baseline STM for comparison is
TL2 [15], which is generally regarded as a high-performing, mod-
ern STM implementation that is largely immune to performance

pathologies. We use the basic GV4 versioned locks in TL2, the
default in the STAMP distribution [37]. We use TL2 because its
algorithms for version management and conflict detection are the
closest match to the TMACC algorithms, allowing for the best in-
dication of the speedup achieved using the hardware. SwissTM [16]
is the highest performing STM of which the authors are aware and
provides 1.1 to 1.3 times the performance of TL2 on the STAMP
applications presented here. We also present the best possible per-
formance using the aforementioned “unprotected” method as an
upper bound. Note that this is truly an upper bound and usually
unattainable because it will produce incorrect results in the face of
any conflicts. Throughout the analyses of results, TMACC-GE and
TMACC-LE represent the schemes described in Section 3.

Graph (a) shows the impact of working set size on TM sys-
tems. The prominent knee in the performance of each system cor-
responds to the working set size outgrowing the on-chip cache. Be-
low the knee, where all user data and TM metadata fit on-chip,
TL2 is spared from off-chip accesses and outperforms the TMACC
systems which must still pay the costly round trip communication
with the FPGA. This effect would be heavily mitigated with faster
(or closer) hardware, and it is certainly rare for the working set of
real parallel workloads to fit in the on-chip cache.

Above the knee, we observe that both TMACC-GE and TMACC-
LE significantly outperform TL2, around 1.35x and 1.75x respec-
tively, approaching the upper bound of 1.95x. In this region, TL2’s
performance suffers because its extra metadata causes significant
cache pressure. Specifically, TL2 relies on its metadata for conflict
detection, so its metadata grows proportionally to a transaction’s
read set. TMACC-GE, on the other hand, uses metadata only for
commit, so its metadata grows with a transaction’s write set, which
is almost always smaller than its read set.

Graph (b) explores the impact of transaction size on speedup
and violation rate. In this graph, we see a well-defined difference
in speedup among the systems. In the flat region in the middle, the
speedup of each system is nearly identical to the speedup of large
working sets in graph (a). For small transactions, TMACC-GE’s
speedup diminishes because the relative cost of the FPGA round
trip latency and global epoch management grows as transaction size
decreases. We will take a closer look at short transactions in graph
(e). For large transactions, the performance of TMACC-LE drops
because the lack of ordering information in local epochs causes the
missed sets to become polluted and emit more false positives. This
is one case where global epochs are preferred over local epochs.

Graph (c) depicts the impact of varying the probability of vi-
olations by turning on C and varying the size of A2 in our mi-
crobenchmark. Note that the graph uses semi-log axes. With a small
A2, there are many violations and transactional retries dominate
performance, making the conflict detection overhead less impor-
tant. As A2 grows, contention decreases and the conflict detection
overhead becomes more important, explaining the expanding per-
formance gap between TMACC-LE, with its low-overhead conflict
detection, and the others.

Graph (d) explores the impact of write set size, and again it is
not surprising that the false positive rate of TMACC-LE becomes
non-trivial due to the inherent pessimism in the local epoch scheme.
However, these false positives are not enough to outweigh the
performance advantage of low-overhead conflict detection.

Interestingly, TMACC-GE also shows diminishing speedup as
write-set size increases. On closer inspection, we found that this
degradation is due to the cache line migration of locks between
the two CPU sockets during commit. As explained in Section 3.1,
TL2 uses more locks than TMACC-GE so it is not as sensitive to
this issue. Increasing the number of locks used by TMACC-GE
diminishes the effect, but reduces overall performance. Having the
FPGA participate in the coherence fabric significantly increases the

parameter set label A1*sizeof(int) A2 R W C N
(a) working-set size 0.5 ∼ 64 (MB) - 80 4 false 8
(b) transaction size 64 (MB) - 10 ∼ 400 max(1, R ∗ 0.05) false 8
(c) true conflicts 64 (MB) 256 ∼ 16,384 40 2 true 8
(d) write-set sizes 64 (MB) - 80 1 ∼ 128 false 8
(e) # of threads (med-sized TX) 64 (MB) - 80 4 false 1 ∼ 8

of threads (small-sized TX) 64 (MB) - 4 1 false 1 ∼ 8

Table 3. Parameter sets used in the microbenchmark evaluation. The labels here match those used in Figure 5.

(a) impact of working-set size (b) impact of transaction size (c) impact of true conflicts

0 10 20 30 40 50 60 70

Size of Array1 (MB)

0

1

2

3

4

5

6

7

8

Sp
ee

du
p

0

10

20

30

40

50

60

70

80

90

100

%
 o

f T
xn

s V
io

lat
ed

0 100 200 300 400

of Reads

0

1

2

3

4

5

6

7

8

Sp
ee

du
p

0

10

20

30

40

50

60

70

80

90

100

%
 o

f T
xn

s V
io

lat
ed

1 10 100

Size of Array2 (KB)

0

1

2

3

4

5

6

7

8

Sp
ee

du
p

0

10

20

30

40

50

60

70

80

90

100

%
 o

f T
xn

s V
io

lat
ed

(d) impact of write-set size (e) impact of number of threads

0 20 40 60 80 100 120 140

of Writes

0

1

2

3

4

5

6

7

8

Sp
ee

du
p

0

10

20

30

40

50

60

70

80

90

100

%
 o

f T
xn

s V
io

lat
ed

1 2 4 8 1 2 4 8

of Threads

0

1

2

3

4

5

6

7

8

Sp
ee

du
p

Medium TX Short TX

0

0

0

Unprotected
TMACC-LE
TMACC-GE
TL2
TMACC-LE Violations
TMACC-GE Violations
TL2 Violations

Figure 5. Microbenchmark performance for various parameter sets. Speedup is shown for 8 threads (except in (e))

last level cache miss penalty for all processors. This is a prominent
factor in the TMACC-GE results, and experiments in Section 4.3
show that moving to an ASIC implementation would largely elim-
inate the performance degradation of TMACC-GE seen here.

Graph (e) examines the impact of number of threads using both
medium-sized transactions and small-sized transactions. Overall,
the systems show worse performance for small-sized transactions
because they all pay a constant overhead per transaction, which
is not easily amortized by short transactions. With the long com-
munication delay to the FPGA, TMACC-GE and TMACC-LE are
unable to achieve better performance than TL2 for short transac-
tions running on 2 or 4 threads. While the FARM system limits us
to 8 threads, scalability to many more threads can be achieved us-
ing multiple FPGAs. This scheme would require communication
between the FPGAs and is left for future work.

The dramatic drop in TL2 performance for short transactions at
8 threads is the result of moving from a single chip to two chips and
the large miss penalty described above. Taking the FPGA out of the
system eliminates this drop in performance as shown in Section 4.3.
We note that this poor TL2 performance on FARM is only present
when transactions are very short.

To summarize, we see that TMACC provides significant accel-
eration of transactional memory except when transactions are too
short to amortize the extra overhead imposed by communicating
with the Bloom filters. We also find that in the case of TM accel-
eration, global epochs only perform better than local epochs when
a large number of shared reads and writes are performed in a rel-
atively short running transaction. In this case, the lack of ordering
information is a larger factor in system performance.

4.2 Performance Evaluation using STAMP
In this section, we evaluate the performance of TMACC on FARM
using STAMP[6], a transactional memory benchmark suite com-
posed of several applications which vary in data set size, memory
access patterns, and size of transactions. Intruder, bayes, and yada
from the STAMP suite did not execute correctly in the 64-bit en-
vironment of FARM (even using TL2) due to bugs in the STAMP
code and have been omitted from the study. Bayes’s and yada’s
long transactions with a high violation rate are similar to those in
labyrinth, and intruder’s short transactions are similar to those in
kmeans-high. Thus, the absence of these apps does not significantly
reduce the coverage of the suite. Table 4 summarizes the input pa-
rameters and the key characteristics of each application. Cycles per
transaction were measured during single-threaded execution with
no read and write barriers. We can roughly group the applications
into two sets by transaction size: vacation, genome, and labyrinth
have larger transactions while ssca2 and kmeans use smaller trans-
actions. Kmeans has large amounts of spatial locality in its data
access and thus uses fewer cycles per transaction despite having
more shared reads and writes.

For this analysis, we include RingSTM [36]. This STM sys-
tem uses a similar approach to accelerating transactional barriers
as TMACC, but the Bloom filters are implemented in software
rather than hardware. Like TMACC but unlike TL2, RingSTM pro-
vides privatization safety. Our RingSTM implementation is based
on the latest open-source version [35] and uses the single-writer al-
gorithm. To provide a better comparison to TL2 and our TMACC
variants, this implementation uses the write buffer implementation
from TL2 instead of the hash table typically used in RingSTM. In
our experiments, the ring is configured to have 1024 entries, where
each entry is a 1024-bit filter.

Name Input parameters RD/tx WR/tx CPU cycles/tx Memory Conflicts
usage (MB)

vacation-low n2 q90 u98 r1048576 t4194304 220.9 5.5 37740 573 very low
vacation-high n4 q60 u90 r1048576 t4194304 302.14 8.5 37642 573 low

genome g16384 s64 n16777216 55.8 1.9 48836 1932 low
kmeans-low m256 n256 65536-d32-c16.txt 25 25 690 16 high

kmeans-high m40 n40 65536-d32-c16.txt 25 25 680 16 low
ssca2 s20 i1.0 u1.0 l3 p3 1 2 2360 1320 very low

labyrinth x512-y512-z7-n512.txt 180 177 6.1 * 109 32 high

Table 4. STAMP benchmark input parameters and application characteristics.

vacation-low vacataion-high genome

1 2 4 8

of Threads

0

1

2

3

4

5

Sp
ee

du
p

0
10
20
30
40
50
60
70
80
90
100

%
 o

f
T

xn
s

V
io

la
te

d

1 2 4 8

of Threads

0

1

2

3

4

5

Sp
ee

du
p

0
10
20
30
40
50
60
70
80
90
100

%
 o

f
T

xn
s

V
io

la
te

d

1 2 4 8

of Threads

0

1

2

3

4

5

6

7

8

Sp
ee

du
p

0
10
20
30
40
50
60
70
80
90
100

%
 o

f
T

xn
s

V
io

la
te

d

Unprotected
TMACC-LE
TMACC-GE
TL2
RingSTM
TL2 Violations
TMACC-LE Violations
TMACC-GE Violations
RingSTM Violations

kmeans-low kmeans-high ssca2 labyrinth

1 2 4 8

of Threads

0

1

2

3

4

5

6

7

8

Sp
ee

du
p

0
10
20
30
40
50
60
70
80
90
100

%
 o

f
T

xn
s

V
io

la
te

d

1 2 4 8

of Threads

0

1

2

3

4

Sp
ee

du
p

0
10
20
30
40
50
60
70
80
90
100

%
 o

f
T

xn
s

V
io

la
te

d

1 2 4 8

of Threads

0

1

2

3

4
Sp

ee
du

p
0
10
20
30
40
50
60
70
80
90
100

%
 o

f
T

xn
s

V
io

la
te

d

1 2 4 8

of Threads

0

1

2

3

4

Sp
ee

du
p

0
10
20
30
40
50
60
70
80
90
100

%
 o

f
T

xn
s

V
io

la
te

d

Figure 6. STAMP performance on the FARM prototype.

Figure 6 shows performance results from executing the STAMP
applications on the FARM prototype. In this graph, we present
speedups of 1, 2, 4 and 8 cores and the percentage of started trans-
actions that were violated. At first glance, we see that the general
trends we saw in the microbenchmark are present in the STAMP
applications; TMACC performs well with large transactions but is
unable to provide acceleration to small transactions. We also pro-
vide the unprotected execution time, using the same method we
used in Section 4.1. As before, the result of such execution is in-
correct and serves as a strict upper bound. As expected, not all ap-
plications were able to run unprotected; some would crash or fall
into infinite loops.

For vacation-high, vacation-low, and genome, the common
characteristics are a relatively large number of reads per trans-
action, small number of writes per transaction, and small number
of conflicts. See Table 4 for exact values. Commit overhead is low
due to the small write set and minimal time wasted retrying trans-
actions because of the small number of conflicts. Also, constant
overheads such as register checkpointing are amortized over the
long running length. Thus, in these large-transaction applications,
the numerous reads make the barrier overhead the dominant fac-
tor influencing performance of the TM system. We saw this effect
in Figure 5.(b). This graph uses a microbenchmark parameter set
which corresponds to the characteristics of these applications, and
we see a very similar spread in performance results for the large-
transaction STAMP applications. Performance gain with respect
to TL2 for these applications averages 1.36x for TMACC-GE and
1.69x for TMACC-LE. Unprotected execution provides an average
speedup of 2.18x. Note that for vacation-high running on TMACC-

LE, while the number of reads is about 300, the drop shown in
Figure 5.(b) does not happen because vacation-high does not have
as many writes as the microbenchmark used in that graph.

The TMACC systems perform similar to RingSTM for low
thread counts but do not suffer from the drop in performance at
higher thread counts like RingSTM. The drop in performance at
higher thread counts seen in RingSTM arises because it is unable to
quickly check individual reads against write set filters like TMACC
is able to do. It instead checks read set filters against write set filters,
and this filter to filter comparison has a much higher probability
of false positives, leading to very high false conflict rates and
significantly degrading performance.

Kmeans-low features a relatively small number of reads, large
number of writes, and small number of conflicts. From Figure 5.(b),
we can expect that a small number of reads will diminish the perfor-
mance gap between TL2 and TMACC. We also see in Figure 5.(d)
that the large number of writes will further diminish TMACC-
GE’s performance. The combined effect explains what we see for
kmeans-low in Figure 6 where for 8 threads TMACC-LE shows a
9% acceleration over TL2 but TMACC-GE is 5% slower.

Even though kmeans-high has very similar characteristics to
kmeans-low except for the number of conflicts, the large number of
violations in kmeans-high overshadows any other effects and lim-
its the speedup of all three systems to a mere 1.3x with 8 threads.
This situation is captured in Figure 5.(c) where the performance
of the three systems converges as the rate of violation increases.
As in kmeans-low, the small transactions make it difficult to amor-
tize the communication overheads of TMACC and it is not able to
achieve any speedup over TL2. Both TMACC systems were addi-

Vacation-Low Vacation-High Genome Kmeans-Low Kmeans-High SSCA2 Labyrinth Average
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

E
xe

cu
tio

n
tim

e

TL2
RingSTM
TMACC-LE
TMACC-GE

Figure 7. Single threaded execution time relative to sequential execution.

tionally undermined by an even larger number of violations than
TL2, which is interesting because Figure 5.(c) shows the TMACC
systems having fewer violations in the face of true conflicts. We
suspect this is a result of TL2’s versioned locks giving more impor-
tance to the lower bits of the address in performing conflict detec-
tion. This causes TL2 to have fewer false positives when addresses
are close together, as they are in kmeans-high. The single-writer
variant of RingSTM we use is not able to scale because of the
large number of writes in both kmeans-low and kmeans-high, even
though its violation rate is comparable to the other systems.

Like kmeans-low and kmeans-high, TMACC performance on
ssca2 is bound by communication latency. The characteristics of
ssca2 are well captured by the microbenchmark parameter set used
to produce the short transactions graph in Figure 5.(e) which mir-
rors the ssca2 speedup graph in Figure 6. Refer to the discussion of
graph (e) in Section 4.1 for an explanation of the results. RingSTM
violates 2.5% of transactions when running 8 threads while the oth-
ers violate less than 0.01%. ssca2 has such a large number of trans-
actions that even a 2.5% violation rate adds significant overhead.

Labyrinth is a special case. As seen in Table 4, this appli-
cation has a very large number of computational cycles inside
each transaction. The execution time is therefore decided by non-
deterministic execution paths and the number of violated transac-
tions rather than TM overhead. In Figure 5.(c) we saw that, in gen-
eral, TMACC-GE has fewer false positives than the other systems.
So in labyrinth with 8 threads, the TMACC-GE system minimized
the number of violations and performed well. For labyrinth’s long-
running transactions, the periodic intra-transaction increment of the
TMACC-LE local epoch was especially important.

Finally, Figure 7 highlights the single thread overhead of the
systems using the single threaded execution time relative to se-
quential execution time. We see that TMACC and RingSTM have
less overhead than TL2 running vacation because of the frequent
barriers. As transactions get smaller in applications like kmeans
and ssca2, commit time becomes more important and the TMACC
systems suffer, while RingSTM continues to do well. Note that
TMACC-GE consistently has more overhead than TMACC-LE
because of the extra time required to (unnecessarily) obtain the
locks during commit. With few barriers and very long transactions,
labyrinth has almost no overhead in any of the systems.

4.3 Performance Projection for TMACC ASIC
In the previous sections, we have observed a few artificial effects
caused by the large cache miss penalty in the FARM system. Since
both TMACC and TL2 witness performance degradation due to
these issues, an interesting question is whether the conclusions
drawn thus far would still be valid in a system absent of these
latency anomalies, such as an off-chip ASIC or part of the uncore
on a chip. The acceleration hardware as presented does not require
a high clock frequency and would occupy a small silicon footprint
in modern processes. Thus in this section, we modify our system
to project the performance of TMACC onto the design point of an
off-chip ASIC. This could be either a stand-alone chip, or part of

WR
14 3 3 3 3 3 3 3

12 3 3 3 3 3 3 3 1 TL2 performs better by more than 3%

10 3 3 3 3 3 3 3 2 Two schemes show similar performance

8 2 2 3 3 3 3 3 3 TMACC-GE performs better by more than 3%

6 1 2 2 3 3 3 3

4 1 1 2 2 2 2 3

2 1 1 1 1 2 3 3

2 4 6 8 10 12 14 RD

Figure 8. Performance comparison of TMACC-GE (ASIC) and
TL2 for short transactions.

the system’s north bridge or memory controller, for example. The
performance of an on-chip TM accelerator would be even better,
since it has a shorter round-trip latency.

To simulate the performance of an ASIC TMACC implemen-
tation, we first detach the FPGA from the system, eliminating the
FPGA-induced snoop latency witnessed by all coherent nodes on
every cache miss. Then, we replace FPGA-communication soft-
ware routines with idle loops in which we control the number of
iterations to simulate different desired communication latencies. In
addition, we change the conflict detection to report a conflict ran-
domly with a given probability. We keep all the STM overheads but
simulate hardware latency. This modified system is a performance
simulator; like the unprotected version it does not provide serializ-
able execution, but can serve as good indicator of real performance.

For the projection study, we repeated the microbenchmark ex-
periments performed in Section 4.1 using these techniques. We
used the measured off-chip cache miss latency as the communi-
cation latency in our simulation, the rationale being that the ASIC
is about as “far” away from the processor as DRAM. In general, we
found the trends and conclusions are the same as those presented
in Section 4.1 expect where we explicitly mentioned otherwise in
the discussions of graphs (d) and (e) of Figure 5. We omit graphs
of the results due to space constraints.

A common trend seen in all the experiments is that the perfor-
mance of TMACC-GE now comes closer to the unprotected, since
the ASIC design point significantly reduces the cache migration la-
tency, and thus the overhead of global epoch management. As noted
in the discussion of graph (d) in Section 4.1, the dramatic perfor-
mance degradation of TMACC-GE as the write set grows disap-
pears with the reduced cache miss penalty of an ASIC implemen-
tation. Also, the performance of TL2 with small transactions no
longer drops dramatically when moving to a dual socket configura-
tion. Both TMACC systems also performed better than before for
short transactions; TMACC-LE outperforms TL2 on 8 threads by
9% now, but TMACC-GE still falls 5% short of TL2 performance.

To determine the point where TMACC-GE begins to outper-
form TL2, we repeated the short transaction experiment from Fig-
ure 5.(e), sweeping the number of reads and writes from 2 to 14,
the result is presented as a schmoo plot in Figure 8. When there are
more than 8 reads or writes, TMACC-GE is able to match the per-
formance of TL2. When there are more than 12, there are enough
accelerated barriers to compensate for the extra cost of commu-
nication, and TMACC-GE outperforms TL2. TMACC-LE outper-
formed TL2 for all of these points. The inability of TMACC to ac-
celerate very small transactions suggests that TMACC would com-
pliment a system that targets small transactions, such as a best-
effort HTM that uses a processor’s write buffer to store speculative
data and falls back to using TMACC for larger transactions.

4.4 Comparison with Simulation
We now briefly contrast our experiences and results with hardware
to our early exploratory work done using software simulation. Con-
siderable effort went in to making our simulations “cycle accurate”,
and our performance predictions for SigTM and TL2, presented in
Figure 1, roughly matched the results presented in the correspond-
ing papers. Initial results from the actual hardware, however, were
quite different from those the simulator had predicted. One main
reason for the discrepancy was the difference between the simu-
lated and actual CPUs. The simplistic CPU model used in simula-
tion (in-order with one non-memory instruction per cycle) drasti-
cally overstated the importance of reducing the instruction count in
the transactional read and write barriers. Modern processors, such
as those in FARM, are much more tolerant of extra instructions in
barriers, reducing the benefit of eliminating those instructions.

Another primary source of inaccuracy arose from the fact that
our simulated interconnect did not model variable latency and com-
mand reordering. The presence of these in a real system led us to
develop the global and local epoch schemes presented in this paper
and thus significantly impacted the performance of the system. In
addition, our simulator assumed the processors were capable of per-
forming true “fire-and-forget” stores with weak consistency with-
out affecting the execution of the core. We therefore did not model
the write combining buffer and its effect on system performance.
In addition, smaller data sets used to run simulation in a reasonable
time frame affected the system performance very differently than a
real workload, in terms of bandwidth consumption, caching effects
and TLB pressure.

Even though we could have performed a more accurate simula-
tion and we eventually approached our desired performance using a
modified design, we believe our experiences provide a strong exam-
ple of the importance of building actual hardware prototypes. Al-
though developing and verifying hardware requires increased time
and effort when compared with using a simulator, hardware is es-
sential to accurately gauge the performance of proposed architec-
tural improvements and to bring out the many issues one might
encounter in actually implementing the idea. Having a hardware
implementation is also a strong evidence of the correctness and va-
lidity of a system.

5. Conclusion
In conclusion, we have presented an architecture, TMACC, for ac-
celerating STM without modifying the processor cores. We con-
structed a complete hardware implementation of TMACC using a
commodity SMP system and FPGA logic. In addition, two novel
algorithms which use the TMACC hardware for conflict detection
were presented and analyzed. Using the STAMP benchmark suite
and a microbenchmark to quantify and analyze the performance of
a TMACC accelerated STM, we showed that TMACC provides sig-
nificant performance benefits. TMACC outperforms a plain STM
(TL2) by an average of 69% in applications using moderate-length
transactions, showing maximum speedup within 8% of an upper
bound on TM acceleration. TMACC provides this performance
improvement even in the face of the high communication latency
between TMACC and the CPU cores. Overall, this paper demon-
strates that it is possible to accelerate TM with an out-of-core accel-
erator and mitigate the impact of fine-grained communication with
careful design.

Acknowledgments
This work was funded by DARPA contract, Oracle order 630003198;
DOE contract, Sandia order 942017; Army contract AHPCRC
W911NF-07-2-0027-1; and the Stanford PPL affiliates program,
Pervasive Parallelism Lab: NVIDIA, Oracle/Sun, AMD, Intel, and
NEC. We also thank A&D Technology Inc. for their help with
the Procyon system and Michael Spear for providing a custom
RingSTM implementation for our use.

References
[1] A.-R. Adl-Tabatabai, B. Lewis, V. Menon, B. R. Murphy, B. Saha, and

T. Shpeisman. Compiler and runtime support for efficient software
transactional memory. In PLDI ’06: ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2006.

[2] W. Baek, C. Cao Minh, M. Trautmann, C. Kozyrakis, and K. Olukotun.
The OpenTM transactional application programming interface. In
PACT ’07: 16th Internation Conference on Parallel Architecture and
Compilation Techniques, 2007.

[3] B. Bloom. Space/time trade-offs in hash coding with allowable errors.
Communications of ACM, 1970.

[4] C. Blundell, J. Devietti, E. C. Lewis, and M. M. K. Martin. Making
the fast case common and the uncommon case simple in unbounded
transactional memory. In ISCA ’07: 34th International Symposium on
Computer Architecture, 2007.

[5] J. Bobba, N. Goyal, M. Hill, M. Swift, and D. Wood. Tokentm:
Efficient execution of large transactions with hardware transactional
memory. In ISCA ’08: 35th International Symposium on Computer
Architecture, 2008.

[6] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP:
Stanford transactional applications for multi-processing. In IISWC
’08: Proc. The IEEE International Symposium on Workload Charac-
terization, 2008.

[7] C. Cao Minh, M. Trautmann, J. Chung, A. McDonald, N. Bronson,
J. Casper, C. Kozyrakis, and K. Olukotun. An effective hybrid trans-
actional memory system with strong isolation guarantees. In ISCA
’07: 34th International Symposium on Computer Architecture, 2007.

[8] J. L. Carter and M. N. Wegman. Universal classes of hash functions.
Journal of Computer and System Sciences, 18(2), 1979.

[9] C. Cascaval, C. Blundell, M. Michael, H. W. Cain, P. Wu, S. Chiras,
and S. Chatterjee. Software transactional memory: Why is it only a
research toy? Queue, 6(5), 2008.

[10] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas. BulkSC: bulk en-
forcement of sequential consistency. In ISCA ’07: 34th International
Symposium on Computer architecture, 2007.

[11] H. Chafi, J. Casper, B. D. Carlstrom, A. McDonald, C. Cao Minh,
W. Baek, C. Kozyrakis, and K. Olukotun. A scalable, non-blocking
approach to transactional memory. In HPCA ’07: 13th International
Symposium on High Performance Computer Architecture, 2007.

[12] S. Chaudhry, R. Cypher, M. Ekman, M. Karlsson, A. Landin, S. Yip,
H. Zeffer, and M. Tremblay. Simultaneous speculative threading: a
novel pipeline architecture implemented in sun’s rock processor. In
ISCA ’09: 36th Intl. Symposium on Computer Architecture, 2009.

[13] L. Dalessandro, M. F. Spear, and M. L. Scott. NOrec: streamlining
STM by abolishing ownership records. In PPoPP ’10: 15th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, PPoPP ’10, 2010.

[14] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and D. Nuss-
baum. Hybrid transactional memory. In ASPLOS ’06: 12th Inter-
nation Conference on Architectural Support for Programming Lan-
guages and Operating Systems, October 2006.

[15] D. Dice, O. Shalev, and N. Shavit. Transactional locking II. In DISC
’06: 20th Internation Symposium on Distributed Computing, 2006.

[16] A. Dragojević, R. Guerraoui, and M. Kapalka. Stretching transactional
memory. In PLDI ’09: ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2009.

[17] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis,
B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis, and K. Oluko-
tun. Transactional memory coherence and consistency. In ISCA ’04:
31st International Symposium on Computer Architecture, 2004.

[18] T. Harris and K. Fraser. Language support for lightweight transactions.
In OOPSLA ’03: 18th ACM SIGPLAN Conference on Object-oriented
Programing, Systems, Languages, and Applications, 2003.

[19] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural
support for lock-free data structures. In ISCA ’93: 20th International
Symposium on Computer Architecture, 1993.

[20] O. S. Hofmann, C. J. Rossbach, and E. Witchel. Maximum benefit
from a minimal HTM. In ASPLOS ’09: 14th International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2009.

[21] S. Hong, T. Oguntebi, J. Casper, N. Bronson, C. Kozyrakis, and
K. Olukotun. Eigenbench: A simple exploration tool for orthogonal
tm characteristics. In IISWC ’10: International Symposium on Work-
load Characterization, 2010.

[22] S. Kumar, M. Chu, C. J. Hughes, P. Kundu, and A. Nguyen. Hybrid
transactional memory. In PPoPP ’06: 11th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming, 2006.

[23] J. Larus and R. Rajwar. Transactional Memory. Morgan Claypool
Synthesis Series, 2006.

[24] M. Lupon, G. Magklis, and A. González. FASTM: A log-based hard-
ware transactional memory with fast abort recovery. In PACT ’09:
18th International Conference on Parallel Architecture and Compila-
tion Techniques, 2009.

[25] V. J. Marathe, W. N. Scherer III, and M. L. Scott. Adaptive Software
Transactional Memory. In DISC ’05: 19th International Symposium
on Distributed Computing, 2005.

[26] S. S. Mukherjee, B. Falsafi, M. D. Hill, and D. A. Wood. Coherent
network interfaces for fine-grain communication. In ISCA ’96: 23rd
International Symposium on Computer Architecture, 1996.

[27] T. Oguntebi, S. Hong, J. Casper, N. Bronson, C. Kozyrakis, and
K. Olukotun. FARM: A prototyping environment for tightly-coupled,
heterogeneous architectures. In FCCM ’10: 18th Symposium on Field-
Programmable Custom Computing Machines, 2010.

[28] M. Olszewski, J. Cutler, and J. G. Steffan. JudoSTM: A dynamic
binary-rewriting approach to software transactional memory. In PACT
’07: 16th International Conference on Parallel Architecture and Com-
pilation Techniques.

[29] H. E. Ramadan, C. J. Rossbach, D. E. Porter, O. S. Hofmann, A. Bhan-
dari, and E. Witchel. Metatm/txlinux: transactional memory for an op-
erating system. SIGARCH Computer Architecture News, 35(2), 2007.

[30] B. Saha, A. Adl-Tabatabai, and Q. Jacobson. Architectural support
for software transactional memory. In MICRO ’06: International
Symposium on Microarchitecture, 2006.

[31] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. Cao Minh, and
B. Hertzberg. McRT–STM: A high performance software transac-
tional memory system for a multi-core runtime. In PPoPP ’06: 11th
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, 2006.

[32] T. Shpeisman, V. Menon, A.-R. Adl-Tabatabai, S. Balensiefer,
D. Grossman, R. L. Hudson, K. Moore, and B. Saha. Enforcing isola-
tion and ordering in stm. In PLDI ’07: Conference on Programming
Language Design and Implementation, 2007.

[33] A. Shriraman, S. Dwarkadas, and M. L. Scott. Flexible decoupled
transactional memory support. In ISCA ’08: 35th International Sym-
posium on Computer Architecture, 2008.

[34] A. Shriraman, M. F. Spear, H. Hossain, V. J. Marathe, S. Dwarkadas,
and M. L. Scott. An integrated hardware-software approach to flexible
transactional memory. SIGARCH Computer Architecture News, 35,
June 2007.

[35] M. F. Spear. Lightweight, robust adaptivity for software transactional
memory. In SPAA ’10: 22nd ACM Symposium on Parallelism in
Algorithms and Architectures, 2010.

[36] M. F. Spear, M. M. Michael, and C. von Praun. RingSTM: scalable
transactions with a single atomic instruction. In SPAA ’08: 20th
Symposium on Parallelism in Algorithms and Architectures, 2008.

[37] STAMP: Stanford transactional applications for multi-processing.
http://stamp.stanford.edu.

[38] F. Tabba, M. Moir, J. R. Goodman, A. Hay, and C. Wang. NZTM:
Nonblocking zero-indirection transactional memory. In SPAA ’09:
21st Symposium on Parallelism in Algorithms and Architectures, 2009.

[39] C. Wang, W.-Y. Chen, Y. Wu, B. Saha, and A.-R. Adl-Tabatabai. Code
generation and optimization for transactional memory constructs in an
unmanaged language. In CGO ’07: International Symposium on Code
Generation and Optimization, 2007.

[40] L. Yen, J. Bobba, M. R. Marty, K. E. Moore, H. Volos, M. D. Hill,
M. M. Swift, and D. A. Wood. LogTM-SE: Decoupling Hardware
Transactional Memory from Caches. In HPCA ’07: 13th International
Symposium on High Performance Computer Architecture, 2007.

[41] L. Yen, S. Draper, and M. Hill. Notary: Hardware techniques to
enhance signatures. In MICRO ’08: 41st International Symposium
on Microarchitecture, 2008.

