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Graph Analysis

� Classic graphs; New applications

� Artificial Intelligence, Computational Biology, …

� SNS apps: Linkedin, Facebook,… 

� Example> Movie Database

Graph Analysis: a process of 
drawing out further information 
from the given graph data-set
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“Is he a central figure in the movie 
network? How much?”

Kevin Bacon

“Do these actors work together 
more frequently than others?”

Ben Stiller Jack Black Owen Wilson

“What would be the avg. hop-distance 
between any two (Australian) actors?”



More formally ,

� Graph Data-Set

� Graph G = (V,E): Arbitrary relationship (E) between 
data entities (V)

� Property P: any extra data associated with each vertex 
or edge of graph G  (e.g. name of the person)

Your Data-Set = (G, Π) = (G, P , P , … )� Your Data-Set = (G, Π) = (G, P1, P2, … )

� Graph analysis on (G, Π) 

� Compute a scalar value

� e.g. Avg-distance, conductance, eigen-value, …

� Compute a (new) property

� e.g. (Max) Flow, betweenness centrality, page-rank, …

� Identify a specific subset of G:

� e.g. Minimum spanning tree, connected component, community 
structure detection, …



The Performance Issue

� Traditional single-core machines showed limited 
performance for graph analysis problems

� A lot of random memory accesses + data does not fit 
in cache

� Performance is bound to memory latency

Conventional hardware (e.g. floating point units) does � Conventional hardware (e.g. floating point units) does 
not help much

� Use parallelism to accelerate graph analysis

� Plenty of data-parallelism in large graph instances

� Performance now depends on memory bandwidth, not 
latency. 

� Exploit modern parallel computers: Multi-core CPU, 
GPU, Cray XMT, Cluster, ...



New Issue: 
Implementation Overhead

� It is challenging to implement a graph 
algorithm

� correctly

� + and efficiently 

+ while applying parallelism� + while applying parallelism

� + differently for each execution environment

� Are we really expecting a single (average-
level) programmer to do all of the above?



Our approach: DSL

� We design a domain specific language (DSL) for graph analysis

� The user writes his/her algorithm concisely with our DSL

� The compiler translates it into the target language (e.g. parallel 
C++ or CUDA)

(1) Inherent data-parallelism (2) Good impl. templates

Efficient (parallel) 
Implementation of 
the given algorithm

For(i=0;i<G.numN
odes();i++) {
__fetch_and_add 

(G.nodes[i], ,)

Foreach (t: G. 
Nodes)

t.sigma += 
,

Intuitive 
Description of a 
graph algorithm

,,

Edgeset

Foreach

BFS

(1) Inherent data-parallelism (2) Good impl. templates

(3) High-level optimization

DSL
Target Language 
(e.g. C++)

DSL
Compiler

Source-to-Source Translation



Example: Betweenness Centrality

� Betweenness Centrality (BC)

� A measure that tells how ‘central’ 
a node is in the graph

� Used in social network analysis

� Definition

How many shortest paths are 

High BCLow BC

� How many shortest paths are 
there between any two nodes 
going through this node.

Ayush K. 
Kehdekar

Kevin 
Bacon

[Image source; Wikipedia]



Example: Betweenness Centrality

[Brandes 2001]
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Accumulate delta into BC



Example: Betweenness Centrality

[Brandes 2001]
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Example: Betweenness Centrality

[Brandes 2001]
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BFS
Order

Parallel Iteration

Parallel 
Assignment

s

v

w w w

Reverse
BFS

Order

Compute delta from children

v

Compute sigma from parents

Parallel 
BFS

Reduction



DSL Approach: Benefits

� Three benefits 

� Productivity 

� Portability

� Performance



Productivity Benefits

� A common limiting resource in software development 

� your brain power (i.e. how long can you focus?)

A C++ implementation  
of BC from SNAP ( a 
parallel graph library parallel graph library 
from GT):

≈ 400 line of codes (with 
OpenMP)

Vs. Green-Marl* LOC: 24

*Green-Marl (그린말) means 
Depicted Language in Korean



Productivity Benefits

Procedure Manual 

LOC

Green-Marl 

LOC

Source Misc

BC ~ 400 24 SNAP C++ openMP

Vertex Cover 71 21 SNAP C++ openMP

Conductance 42 10 SNAP C++ openMP

Page Rank 75 15 http:// .. C++ single thread

� It is more than LOC

� Focusing on the algorithm, not its implementation

� More intuitive, less error-prone

� Rapidly explore many different algorithms

Page Rank 75 15 http:// .. C++ single thread

SCC 65 15 http:// .. Java single thread



Portability Benefits (On-going work)

� Multiple compiler targets

� SMP back-end

DSL 
Description

DSL
Compiler

(Parallelized)
C++

Command line 
argument

CUDA for
GPU

Codes for
Cluster

� SMP back-end

� Cluster back-end (*)

� For large instances

� We generate codes that work on Pregel API [Malewicz 
et al. SIGMOD 2010]

� GPU back-end (*)

� For small instances

� We know some tricks [Hong et al. PPOPP 2011]

LIB (& RT) LIB (& RT) LIB (& RT)



Performance Benefits

Green-Marl Code Target Arch.
(SMP? GPU? 
Distributed?)

Threading Lib, 
(e.g.OpenMP)
Graph Data Structure

Back-end specific 
optimization

Optimized data structure 
& Code template

Parsing & 
Checking

Arch. 
Independent 

Opt

Arch. 
Dependent 

Opt

Code 
Generation

Target Code

(e.g. C++)

Compiler

Use High-level 
Semantic
Information



Arch-Indep-Opt: Loop Fusion

Foreach(t: G.Nodes)
t.A = t.C + 1;

Foreach(s: G.Nodes)
s.B = s.A + s.C;

Foreach(t: G.Nodes) {
t.A = t.C +1;
t.B = t.A + t.C;

}

Loop
Fusion

“set” of nodes
(elems are unique)

Map<Node, int> A, B, C;
List<Node>& Nodes = G.getNodes();
List<Node>::iterator t, s;
for(t = Nodes.begin(); t != Nodes.end(); t++) 

A[*t] = C[*t];
for(s = Nodes.begin(); s != Nodes.end(); s++) 

B[*s] = A[*s] + C[*s];

Optimization enabled by high-level 
(semantic) information

C++ compiler cannot merge 
loops 
(Independence not 
gauranteed)



Arch-Indep-Opt: Flipping Edges

� Graph-Specific Optimization

Foreach(t: G.Nodes)
Foreach(s: t.InNbrs)(s.B>0)

t.A += 1;

Foreach(t: G.Nodes)(t.B>0)
Foreach(s: t.OutNbrs)

s.A += 1;

t

s s

s

t

s

Adding 1 to for all 
Outgoing Neighbors, 
if my B value is 
positive

t ss

Counting number of 
Incoming Neighbors
whose B value is positive

(Why?) Reverse edges may not be 
available or expensive to compute

Optimization using domain-specific 
property



Arch-Dep-Opt : Selective Parallelization

� Flattens nested parallelism with a heuristic

Foreach(t: G.Nodes) {
Foreach(s: G.Nodes)(s.X > t.Y) {

Foreach(r: s.Nbrs) {
s.A += r.B;

}
t.C *= s.A;

For (t: G.Nodes) {
Foreach(s: G.Nodes)(s.X > t.Y) {

For (r: s.Nbrs) {

Compiler chooses 
parallel region, 
heuristically

t.C *= s.A;
}
val min= t.C

}

Three levels of 
nested parallelism 
+ reductions

For (r: s.Nbrs) {
s.A += r.B;

}
t.C *= s.A;

}
val min= t.C

}

For (t: G.Nodes) {
Foreach(s: G.Nodes)(s.X > t.Y) {

For (r: s.Nbrs) {
s.A = s.A + r.B;

}
t.C *= s.A;

}
val = (t.C < val) ? t.C : val;

}

Reductions became 
normal read & write

[Why?] 
• Graph is large 
• # core is small.  
• There is 
overhead for  
parallelization

Optimization enabled by both 
architectural and domain knowledge



Code-Gen: Saving DownNbrs in BFS

� Prepare data structure for reverse BFS traversal during 
forward traversal, only if required.

InBFS(t: G.Nodes From s) {
…

}
InRBFS {

// Preperation of BFS

…

// Forward BFS (generated)
{ …

Generated code 
saves edges to the 
down-nbrs during 
forward traversal.

Optimization enabled by code analysis 
(i.e. no BFS library could do this 
automatically)

InRBFS {
Foreach (s: t.DownNbrs)

…
}

// k is an out-edge of s
for(k … )  

node_t child = get_node(k);
if (is_not_visited(child)) { 

…;     // normal BFS code here
edge_bfs_child[k] = true;

}  }
…}

// Reverse BFS (generated)

{ …
// k is an out-edge of s
for(k … )  { 

if (!edge_bfs_child[k]) continue;
…

} }

Compiler detects that 
down-nbrs are used in 
reverse traversal

Generated code can 
iterate only edges to 
down-nbrs during 
reverse traversal



Code-Gen: Code Templates

� Data Structure

� Graph: similar to a conventional graph library

� Collections: custom implementation

� Code Generation Template

� BFS � BFS 

� Hong et al. PACT 2011 (for CPU and GPU)

� Better implementations coming; can be adapted 
transparently

� DFS

� Inherently sequential 

Compiler takes any benefits that a (template) 
library would give, as well



Experimental Results

� Betweenness Centrality Implementation

(1) [Bader and Madduri ICPP 2006] 

(2) [Madduri et al. IPDPS 2009] 

� Apply some new optimizations 

� Performance improved over (1) ~ x2.3 on Cray XMT

� Parallel implementation available in SNAP library based 

on (1) not (2) (for x86)

� Our Experiment

� Start from DSL description (as shown previously)

� Let the compiler apply the optimizations in (2), 
automatically.



(two different synthetic graphs)

Experimental Results
Effects of other optimizations

• Flipping Edges
• Saving BFS children

Parallel performance 
difference

Nehalem (8 cores x 2HT), 32M nodes, 256M edges

Better single thread performance:
(1) Efficient BFS code
(2) No unnecessary locks

Shows speed up over 
Baseline: SNAP 
(single thread)



Other Results

Conductance

Perf similar to 
manual impl.

•Loop Fusion
• Privitization• Privitization

Vertex Cover

Original code 
� data race;

Naïve correction
(omp_critical)  
� serialization•Test and Test-set

• Privitization



Other Results

PageRank

Compare against Seq. Impl

Automatic parallelization as much as exposed 
data parallelism (i.e. there is no black magic)

Strongly 
Connected 
Component

DFS + BFS: 
Max Speed-up is 2 

(Amdahl's Law)



Conclusion

� Green-Marl

� A DSL designed for graph analysis 

� Three benefits

� Productivity 

Performance� Performance

� Portability (soon)

� Project page: ppl.stanford.edu/main/green_marl.html

� GitHub repository: github.com/stanford-ppl/Green-marl


