
Green-Marl: A DSL for Easy and Efficient

Graph Analysis

Sungpack Hong*, Hassan Chafi*+, Eric Sedlar+,

and Kunle Olukotun*

*Pervasive Parallelism Lab, Stanford University
+Oracle Labs

Graph Analysis

� Classic graphs; New applications

� Artificial Intelligence, Computational Biology, …

� SNS apps: Linkedin, Facebook,…

� Example> Movie Database

Graph Analysis: a process of
drawing out further information
from the given graph data-set

James
Cameron

Avatar

Sigourney
Weaver

Aliens

Sam
Worthington

Linda
Hamilton

,,

“Is he a central figure in the movie
network? How much?”

Kevin Bacon

“Do these actors work together
more frequently than others?”

Ben Stiller Jack Black Owen Wilson

“What would be the avg. hop-distance
between any two (Australian) actors?”

More formally ,

� Graph Data-Set

� Graph G = (V,E): Arbitrary relationship (E) between
data entities (V)

� Property P: any extra data associated with each vertex
or edge of graph G (e.g. name of the person)

Your Data-Set = (G, Π) = (G, P , P , …)� Your Data-Set = (G, Π) = (G, P1, P2, …)

� Graph analysis on (G, Π)

� Compute a scalar value

� e.g. Avg-distance, conductance, eigen-value, …

� Compute a (new) property

� e.g. (Max) Flow, betweenness centrality, page-rank, …

� Identify a specific subset of G:

� e.g. Minimum spanning tree, connected component, community
structure detection, …

The Performance Issue

� Traditional single-core machines showed limited
performance for graph analysis problems

� A lot of random memory accesses + data does not fit
in cache

� Performance is bound to memory latency

Conventional hardware (e.g. floating point units) does � Conventional hardware (e.g. floating point units) does
not help much

� Use parallelism to accelerate graph analysis

� Plenty of data-parallelism in large graph instances

� Performance now depends on memory bandwidth, not
latency.

� Exploit modern parallel computers: Multi-core CPU,
GPU, Cray XMT, Cluster, ...

New Issue:
Implementation Overhead

� It is challenging to implement a graph
algorithm

� correctly

� + and efficiently

+ while applying parallelism� + while applying parallelism

� + differently for each execution environment

� Are we really expecting a single (average-
level) programmer to do all of the above?

Our approach: DSL

� We design a domain specific language (DSL) for graph analysis

� The user writes his/her algorithm concisely with our DSL

� The compiler translates it into the target language (e.g. parallel
C++ or CUDA)

(1) Inherent data-parallelism (2) Good impl. templates

Efficient (parallel)
Implementation of
the given algorithm

For(i=0;i<G.numN
odes();i++) {
__fetch_and_add

(G.nodes[i], ,)

Foreach (t: G.
Nodes)

t.sigma +=
,

Intuitive
Description of a
graph algorithm

,,

Edgeset

Foreach

BFS

(1) Inherent data-parallelism (2) Good impl. templates

(3) High-level optimization

DSL
Target Language
(e.g. C++)

DSL
Compiler

Source-to-Source Translation

Example: Betweenness Centrality

� Betweenness Centrality (BC)

� A measure that tells how ‘central’
a node is in the graph

� Used in social network analysis

� Definition

How many shortest paths are

High BCLow BC

� How many shortest paths are
there between any two nodes
going through this node.

Ayush K.
Kehdekar

Kevin
Bacon

[Image source; Wikipedia]

Example: Betweenness Centrality

[Brandes 2001]

Queues, Lists,
Stack,
Is this

Looks
complex

s

w w

BFS
Order

Init BC for every node
and begin outer-loop (s)

s

v

w w w

Reverse
BFS

Order

Compute delta from children

Is this
parallelizable? v

Compute sigma from parents

Accumulate delta into BC

Example: Betweenness Centrality

[Brandes 2001]

s

w w

BFS
Order

s

v

w w w

Reverse
BFS

Order

Compute delta from children

v

Compute sigma from parents

Example: Betweenness Centrality

[Brandes 2001]

s

w w

BFS
Order

Parallel Iteration

Parallel
Assignment

s

v

w w w

Reverse
BFS

Order

Compute delta from children

v

Compute sigma from parents

Parallel
BFS

Reduction

DSL Approach: Benefits

� Three benefits

� Productivity

� Portability

� Performance

Productivity Benefits

� A common limiting resource in software development

� your brain power (i.e. how long can you focus?)

A C++ implementation
of BC from SNAP (a
parallel graph library parallel graph library
from GT):

≈ 400 line of codes (with
OpenMP)

Vs. Green-Marl* LOC: 24

*Green-Marl (그린말) means
Depicted Language in Korean

Productivity Benefits

Procedure Manual

LOC

Green-Marl

LOC

Source Misc

BC ~ 400 24 SNAP C++ openMP

Vertex Cover 71 21 SNAP C++ openMP

Conductance 42 10 SNAP C++ openMP

Page Rank 75 15 http:// .. C++ single thread

� It is more than LOC

� Focusing on the algorithm, not its implementation

� More intuitive, less error-prone

� Rapidly explore many different algorithms

Page Rank 75 15 http:// .. C++ single thread

SCC 65 15 http:// .. Java single thread

Portability Benefits (On-going work)

� Multiple compiler targets

� SMP back-end

DSL
Description

DSL
Compiler

(Parallelized)
C++

Command line
argument

CUDA for
GPU

Codes for
Cluster

� SMP back-end

� Cluster back-end (*)

� For large instances

� We generate codes that work on Pregel API [Malewicz
et al. SIGMOD 2010]

� GPU back-end (*)

� For small instances

� We know some tricks [Hong et al. PPOPP 2011]

LIB (& RT) LIB (& RT) LIB (& RT)

Performance Benefits

Green-Marl Code Target Arch.
(SMP? GPU?
Distributed?)

Threading Lib,
(e.g.OpenMP)
Graph Data Structure

Back-end specific
optimization

Optimized data structure
& Code template

Parsing &
Checking

Arch.
Independent

Opt

Arch.
Dependent

Opt

Code
Generation

Target Code

(e.g. C++)

Compiler

Use High-level
Semantic
Information

Arch-Indep-Opt: Loop Fusion

Foreach(t: G.Nodes)
t.A = t.C + 1;

Foreach(s: G.Nodes)
s.B = s.A + s.C;

Foreach(t: G.Nodes) {
t.A = t.C +1;
t.B = t.A + t.C;

}

Loop
Fusion

“set” of nodes
(elems are unique)

Map<Node, int> A, B, C;
List<Node>& Nodes = G.getNodes();
List<Node>::iterator t, s;
for(t = Nodes.begin(); t != Nodes.end(); t++)

A[*t] = C[*t];
for(s = Nodes.begin(); s != Nodes.end(); s++)

B[*s] = A[*s] + C[*s];

Optimization enabled by high-level
(semantic) information

C++ compiler cannot merge
loops
(Independence not
gauranteed)

Arch-Indep-Opt: Flipping Edges

� Graph-Specific Optimization

Foreach(t: G.Nodes)
Foreach(s: t.InNbrs)(s.B>0)

t.A += 1;

Foreach(t: G.Nodes)(t.B>0)
Foreach(s: t.OutNbrs)

s.A += 1;

t

s s

s

t

s

Adding 1 to for all
Outgoing Neighbors,
if my B value is
positive

t ss

Counting number of
Incoming Neighbors
whose B value is positive

(Why?) Reverse edges may not be
available or expensive to compute

Optimization using domain-specific
property

Arch-Dep-Opt : Selective Parallelization

� Flattens nested parallelism with a heuristic

Foreach(t: G.Nodes) {
Foreach(s: G.Nodes)(s.X > t.Y) {

Foreach(r: s.Nbrs) {
s.A += r.B;

}
t.C *= s.A;

For (t: G.Nodes) {
Foreach(s: G.Nodes)(s.X > t.Y) {

For (r: s.Nbrs) {

Compiler chooses
parallel region,
heuristically

t.C *= s.A;
}
val min= t.C

}

Three levels of
nested parallelism
+ reductions

For (r: s.Nbrs) {
s.A += r.B;

}
t.C *= s.A;

}
val min= t.C

}

For (t: G.Nodes) {
Foreach(s: G.Nodes)(s.X > t.Y) {

For (r: s.Nbrs) {
s.A = s.A + r.B;

}
t.C *= s.A;

}
val = (t.C < val) ? t.C : val;

}

Reductions became
normal read & write

[Why?]
• Graph is large
• # core is small.
• There is
overhead for
parallelization

Optimization enabled by both
architectural and domain knowledge

Code-Gen: Saving DownNbrs in BFS

� Prepare data structure for reverse BFS traversal during
forward traversal, only if required.

InBFS(t: G.Nodes From s) {
…

}
InRBFS {

// Preperation of BFS

…

// Forward BFS (generated)
{ …

Generated code
saves edges to the
down-nbrs during
forward traversal.

Optimization enabled by code analysis
(i.e. no BFS library could do this
automatically)

InRBFS {
Foreach (s: t.DownNbrs)

…
}

// k is an out-edge of s
for(k …)

node_t child = get_node(k);
if (is_not_visited(child)) {

…; // normal BFS code here
edge_bfs_child[k] = true;

} }
…}

// Reverse BFS (generated)

{ …
// k is an out-edge of s
for(k …) {

if (!edge_bfs_child[k]) continue;
…

} }

Compiler detects that
down-nbrs are used in
reverse traversal

Generated code can
iterate only edges to
down-nbrs during
reverse traversal

Code-Gen: Code Templates

� Data Structure

� Graph: similar to a conventional graph library

� Collections: custom implementation

� Code Generation Template

� BFS � BFS

� Hong et al. PACT 2011 (for CPU and GPU)

� Better implementations coming; can be adapted
transparently

� DFS

� Inherently sequential

Compiler takes any benefits that a (template)
library would give, as well

Experimental Results

� Betweenness Centrality Implementation

(1) [Bader and Madduri ICPP 2006]

(2) [Madduri et al. IPDPS 2009]

� Apply some new optimizations

� Performance improved over (1) ~ x2.3 on Cray XMT

� Parallel implementation available in SNAP library based

on (1) not (2) (for x86)

� Our Experiment

� Start from DSL description (as shown previously)

� Let the compiler apply the optimizations in (2),
automatically.

(two different synthetic graphs)

Experimental Results
Effects of other optimizations

• Flipping Edges
• Saving BFS children

Parallel performance
difference

Nehalem (8 cores x 2HT), 32M nodes, 256M edges

Better single thread performance:
(1) Efficient BFS code
(2) No unnecessary locks

Shows speed up over
Baseline: SNAP
(single thread)

Other Results

Conductance

Perf similar to
manual impl.

•Loop Fusion
• Privitization• Privitization

Vertex Cover

Original code
� data race;

Naïve correction
(omp_critical)
� serialization•Test and Test-set

• Privitization

Other Results

PageRank

Compare against Seq. Impl

Automatic parallelization as much as exposed
data parallelism (i.e. there is no black magic)

Strongly
Connected
Component

DFS + BFS:
Max Speed-up is 2

(Amdahl's Law)

Conclusion

� Green-Marl

� A DSL designed for graph analysis

� Three benefits

� Productivity

Performance� Performance

� Portability (soon)

� Project page: ppl.stanford.edu/main/green_marl.html

� GitHub repository: github.com/stanford-ppl/Green-marl

