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Trends in hardware design   

 Moore‟s Law still in effect 

 But no more free lunch…performance is no longer free 

 Parallelism   

 Due to limited clock frequency 

 Many CPUs rather than a single super-fast one. 

 Heterogeneity 

 Due to limited power budget 

 Specialized HW for a specific task 



Questions Raised… 

 This trend leads us to a system with … 

 Multiple CPUs 

 Custom HW units 

 All working concurrently for a single program 

 More than simple time-sharing 

 Questions 

 What does such a system look like?  

 Do we have proper design/verification methodology 
for such a system? 

 If not, what are the issues? 

 This is a case-study presentation to explore these 
questions rather than to answer them. 



Our system as a case study 

 External hardware acceleration of software 
transactional memory on commodity CPUs  

 … wait, what? 

 Several x86 CPUs 

 Two sockets, each AMD quad core 

 All running a single multi-threaded application 

 Plus a custom HW 

 A FPGA, attached coherently to CPUs 

 Accelerating a special software library, called Software 
Transactional Memory (STM) 

 All working in parallel  

 Okay then, what is STM? 



Backgrounds: Transactional Memory 

 Parallel programming is hard 

 data races.. 

 Related issues: dead-lock, live-lock, … 

 

 Transactional Memory (TM) 

 A proposal to simplify parallel programming 

 The programmer simply declares critical regions in the 
program as transactions and puts all shared 
reads/writes inside 

 The runtime system (a.k.a. transactional memory) 
detects all the runtime data races 

 The runtime roll-backs conflicting transactions and thus 
guarantees serialize-ability of the program execution. 

 



TM Example: Programming 

void money_transfer(int account[], int from,  

                    int to, int amount) { 

 

  BEGIN_TX();  

 

    int from_before = READ(account[from]); 

    int to_before   = READ(account[to]);    

    

    int from_after  = from_before – amount; 

    int to_after    = to_before + amount; 

 

    WRITE (account[from], from_after); 

    WRITE (account[to], to_after); 

   

  END_TX(); 

} 

Begin 
transaction 

Read shared 
variables 

Local 
computation 

Write shared 
variable 
computation 

End 
transaction Each transaction is guaranteed 

to be “atomic” 



TM Example: Runtime 

Thread 1 Thread 2 Thread 3 

TM 
Runtime 

(A C) 
 
   Read A; 
   Read C; 
   .. 
   Write A; 
   Write C; 
 

(B C) 
 
   Read B; 
   Read C; 
   .. 
   Write A; 
   Write C; 
 

(G F) 
 
   Read G; 
   Read F; 
   .. 
   Write G; 
   Write F; 
 

Each thread 
runs its own 
transaction  

TM Runtime 
detects data 
race 

TM Runtime 
rolls back 
conflicted TX 



Back to our case 

 Approaches in TM runtime implementation 

 STM: all in SW  lots of overhead, slow 

 HTM: all in HW  Requires CPU core modification 

 … but you‟d rather avoid changing a commodity 
core‟s RTL 

 Our approach  

 Part in HW, rest in SW (a hybrid approach) 

 External custom HW  

 Sits outside cores (on FPGA) via memory bus 

 No core modification required 

 External communication takes some time but we 
know how to mitigate this! 

 

 



Our idea in a nutshell 

Core 1 Core 2 FPGA 

1:Read A 

1:Read C 

1:Write A 

1:Write C 

2:Read C 

Each core sends  a 
message to FPGA, 
for each read/write. 

1:Ok To 
Commit? 

1:OK 

2:Rollback 

AC CB 

FPGA detects 
violation and 
sends 
notification 

 
“Wow, this is 
so cool. Let’s 
build this thing 
already!” 

+ Some ideas for 
latency hiding on 
the SW-side 

+ Some ideas for 
fast violation 
detection on the 
HW-side 



Our initial co-design 

 How to design a closely-coupled system? 

 New HW 

 New software library (STM) that uses the new HW 

 Let‟s simulate it!  

 Design HW/SW interface (i.e. communication protocol)  

   with a cycle-based x86 ISS (Instruction-Set simulator) 

 Custom HW  pure virtual model  

 Develop the SW on top of simulation 

 What about HW design? 

 Do RTL design separately 

 Find RTL bugs with unit test 

 High-level protocol is already validated with simulation 



And there we go …  

 Our simulation was successful 

 Our protocol works and is faster than 
conventional STM 

 We obtained a HW framework 

 Two sockets, each with AMD quad-core 

 An FPGA connected via HyperTransport® 

 We implemented a coherent cache on FPGA* 

 It was a (re-usable) part of our design   

 We implemented the custom HW as we 
designed 

 All the unit tests are passed  

 So we ran the whole system …. 

 … And it didn‟t work 

 Transactions were not atomic at all 

* Another long story 



What happened..? (In retrospect) 

Core 1 Core 2 FPGA 

1:Write C 

2:Read C 

1:Ok To 
Commit? 

2:Rollback 

What we designed What actually happened 

1:OK 

Core 1 Core 2 FPGA 

1:Write C 

2:Read C 

1:Ok To 
Commit? 

1:OK 

Read happens here 

The message delivery 
has been delayed 
(out of order) 

FPGA can’t detect the 
conflict (thinks it’s a 
valid read-after-write) 



How could we have missed that? 

 Problems with our simulator 

 We used a detailed x86 ISS 

 All instructions included and some cache protocols.  

 But the simulated interconnect was far from that of real 
HW system… 

 HyperTransport + external pin-out + FPGA … 

 The simulation was in-order and deterministic 

 no latency variance  

 Problems with unit testing 

 Cannot generate the complicated error sequence! 

 Requires a lot of interaction with software 

 



A Futile Resistance 

 “Hey, we already have the FPGA implementation. Let‟s just 
debug it (with a logic analyzer).” 

 Problem 

 The „time span‟ of a typical error is very long 

 It is not clear when and how the problem happens 

 i.e. Error not detectable by a simple trigger 

 Logic analyzer gives a limited scope in time 

 

 

Timeline 

CPU1 

CPU N 

…… 

100s ~ 100,000s of transactions (ms ~ secs of time) 

Each TX contains R 
reads and W writes 

Error, if fails to detect 
a conflict between any 
two TXs 

The error is observed 
much later at time; 
without knowing when 
the error has happened 
 

 
Limited logic analyze 
scope (order of us) 
 



What do we need? 

 Verification of a concurrent system  

 Interleaving of parallel executions  

 Out-of-order message delivery 

 Many different interleaving in a short time (i.e. fast 
execution) 

 Resemblance to the actual system 

 Actual HW (RTL) + Actual SW debugging preferred 

 Minimum modification for verification 

 Crucial features for verification 

 Deterministic replay – the exact same interleaving 
should be generated at will  

 A better mechanism for bug finding than waveform view 

 Easier log analysis, at least 



Comparisons of Available Tools 

Method Pros Cons 

Prototyping  • Target HW + SW 
• Fast execution  

• Limited visibility 
• No deterministic replay 

Full RTL sim. 
(CPU + interconnection + 
Custom HW) 

• Target HW + SW 
• Deterministic replay 

• All RTL not available 
• Too slow 
• No variation of interleaving 

Binary instrumentation 
(i.e. PIN-based simulation) 

• Target SW 
• Fast execution 

• No HW debugging  
• No deterministic replay 

Instruction-set sim. 
+ RTL sim (or virtual HW)  

• Target SW 
• Deterministic replay 

• No variation of interleaving 
 

SW Model  
+ network sim. 
(Bus Functional Model) 
+ RTL sim. (or virtual HW) 

• Faster than ISS 
 
 

• SW modification 
• Variation of interleaving? 
• Deterministic replay? 

[Option 1] Modify x86 ISS 
• Connect ISS with network sim (BFM) + 
RTL sim 
• Add various interleavings?  

[Option 2] Modify Target SW  
• Connect SW with BFM + RTL sim 
• Add various interleavings 
• Add deterministic replay 

• Easier to do  
(you know a lot more 
about SW than simulator) 
• Faster to run  

 



ISS-based approach (illustration) 
void foo(…){ 

  BEGIN_TX();  

  int … = READ(…); 

  local_compute(); 

  WRITE (…); 

  END_TX(); 

} 

User Program 

Binary 

void READ(…){ 

 HW_check_status(); 

 … 

 some_processing(); 

  

 HW_send_msg(); … } 

TM library 

Compile 

inline  

int HW_check_status(…) 

 return  

  *FPGA_ADDR & bitmask; 

} 

HAL (HW Abstraction Layer) 

ISS 
Simulator 
(CPU) 
 
(cycle-based) 

Network 
Simulator 
(HyperTransport) 
 
(cycle-based) 

RTL 
Simulator 
(Custom HW) 
 
(event-based) 

• Where / How do we add various interleavings, 
i.e. which simulator do we want to modify? 
 
• A lot of simulation overhead 

Do we 
need CPU 
simulation 
at all? 



BFM-based approach (illustration) 
void foo(…){ 

  BEGIN_TX();  

  int … = READ(…); 

  local_compute();  

  WRITE (…); 

  END_TX(); 

} 

User Program 

void READ(…){ 

 HW_check_status(); 

 … 

 some_processing(); 

  

 HW_send_msg(); … } 

TM library 

inline  

int HW_check_status(…) 

 return  

   BFM_SIM_Read(…) &  

      bitmask; 

} 

NEW HAL 

Network 
Simulator 
(HyperTransport) 
 
(cycle-based) 

RTL 
Simulator 
(Custom HW) 
 
(event-based) 

int BFM_SIM_Read(…){ 

  ……   

  Network_Inject_packet(READ_REQ, …); 

  …… 

} 

Bus Functional Model  (BFM) 
Simulator 

• HAL is re-written to 
invoke BFM 
methods instead 

BFM directly interacts with 
the Network simulator 

SW + BFM + Network simulator 
linked together 



Our BFM Simulator 

 Deterministic Concurrency Control 

 BFM itself is single-threaded 

 BFM uses light-weight threads (i.e. fibers) to implement 
user threads in the applications 

 Contexts switch happens at network packet injection 

 

int BFM_SIM_Read(…){ 

  ……   

  Network_Inject_packet(…); 

  Context_Switch(SIM); 

  …… 

} 

void clock(){ 

 for (i = 1 .. N) { 

  if (thread[i].isReady()) { 

    Context_Switch(thread[i]); 

    … 

  } 

} 

Network 
Simulator 
(cycle-based) 



Our BFM Simulator 

 Fast execution 

 All the local computations are natively executed 

 No CPU simulation at all  

 We only need software interacting with HW 
simulation 

 Do not waste simulation cycles for computation 

… 

x = READ(…) 

Y =  

 local_compute(Y);  

 

WRITE (Y); 

User Program 

void WRITE(…){ 

 Some_processing(); 

 … 

 HW_send_msg(…);  

 

} 

TM library 

inline  

int HW_send_msg(…) 

 return  

   BFM_SIM_WRITE_NC(…)  

} 

NEW HAL 

All this local computation is executed natively, 
without consuming a simulation cycle 



Our BFM Simulator 

 Variable interleaving of concurrent executions  

   + Deterministic replay 

 All the local computation happens at a cycle 

 Actual packet delivery time is deterministic 

 Insert random idle cycles before packet injection 

 Not meant to compensate for computation time 

 But inserts deterministic variation in concurrent executions 

 Interleaving is dependent solely on random seed 

 Deterministic re-play  use the same random seed 

 int BFM_SIM_Read(…){ 

  BFM_Idle_Cycles(get_random()); 

  Context_Switch(SIM); 

  … 

  Network_Inject_packet(READ_REQ, …); 

  Context_Switch(SIM); 

} 

Thread1 

Thread N 

Zero-cycle 
computation 

Random Idle 
Cycles 

Deterministic 
Packet Delivery 



Our BFM Simulator 

 Convenient error analysis 

 Logging at high-level 

 at packet level, or 

 at HAL level 

 

 Automatic error detection 

 Simulation = shared-memory, single threaded, 
deterministic execution  

 Each user thread can see what other threads are 
doing 

 Further modify STM 

 Maintain a shadow data-structure that checks 
conflicts on-line (only works for simulation) 



Worked well for our case 

 Fast simulation enabled many different interleaving of 
concurrent executions in short time 

 

 

 

 

 

 

 

 With this environment, we actually designed and debugged  

 The Custom HW (RTL) 

 The new SW (STM library) 

 And the new communication protocol (system) 

 All together 

 

Environment Execution Time 

Prototype HW 
(1.8Ghz x86 + FPGA) 

~ 10 ms 

BFM + RTL sim ~ 15 mins 

BFM + Virtual HW ~ 100 ms 

ISS + Virtual HW ~ 100 mins 

Small test-bench execution time 
What we actually 
used 

•For comparisons. 
•BFM uses much 
less simulation 
cycle 



Generalization and Pitfalls 

 Key insights 

 SW modification is easier than simulator modification 

 Local computation can be natively executed 

 Only global communication is simulated via Network 
simulation 

 Caveat: Ease of SW modification  

 Assumes that you can identify HW interface easily 

 Assumes that you can distinguish local computation and 
global communication (i.e. shared data access) 

 Usually true  

 Parallel SW designed with HAL and critical sections  

 But you should check your SW… 

 Not suitable for performance estimation 

 



Requests for CAD Researchers 

 Our approach was still ad hoc … 

 Is there a more systematic solution? 

 

 Part-wise selection of details of simulation 

(e.g) Native SW execution (for local computation)  

  + Detailed HW simulation (for custom HW design) 

  + Detailed network simulation  

 

 Randomizing variance of concurrent executions 

 Should be deterministically re-playable  

 



Summary 

 Co-design and Co-verification for post Moore‟s 
law era 

 Parallelism and Heterogeneity   

 Potential concurrency issues at design time 

 Required Features 

 Variable interleaving of concurrent executions 

 Deterministic Replay 

 Fast execution time + sufficient of visibility 

 In our case study 

 We used SW Model + BFM (interconnection) + RTL sim 

 SW modification was easier than ISS improvement 

 Hope there can be a generalized solution 

 



Questions? 


