
A Case of System-level HW/SW

Co-design and Co-verification of a Commodity

Multi-Processor System with Custom Hardware

Sungpack Hong*, Tayo Oguntebi, Jared Casper,

Nathan Bronson*, Christos Kozyrakis, Kunle Olukotun

Pervasive Parallelism Lab

Stanford University

* This work was done while the authors were at Stanford.

Trends in hardware design

 Moore‟s Law still in effect

 But no more free lunch…performance is no longer free

 Parallelism

 Due to limited clock frequency

 Many CPUs rather than a single super-fast one.

 Heterogeneity

 Due to limited power budget

 Specialized HW for a specific task

Questions Raised…

 This trend leads us to a system with …

 Multiple CPUs

 Custom HW units

 All working concurrently for a single program

 More than simple time-sharing

 Questions

 What does such a system look like?

 Do we have proper design/verification methodology
for such a system?

 If not, what are the issues?

 This is a case-study presentation to explore these
questions rather than to answer them.

Our system as a case study

 External hardware acceleration of software
transactional memory on commodity CPUs

 … wait, what?

 Several x86 CPUs

 Two sockets, each AMD quad core

 All running a single multi-threaded application

 Plus a custom HW

 A FPGA, attached coherently to CPUs

 Accelerating a special software library, called Software
Transactional Memory (STM)

 All working in parallel

 Okay then, what is STM?

Backgrounds: Transactional Memory

 Parallel programming is hard

 data races..

 Related issues: dead-lock, live-lock, …

 Transactional Memory (TM)

 A proposal to simplify parallel programming

 The programmer simply declares critical regions in the
program as transactions and puts all shared
reads/writes inside

 The runtime system (a.k.a. transactional memory)
detects all the runtime data races

 The runtime roll-backs conflicting transactions and thus
guarantees serialize-ability of the program execution.

TM Example: Programming

void money_transfer(int account[], int from,

 int to, int amount) {

 BEGIN_TX();

 int from_before = READ(account[from]);

 int to_before = READ(account[to]);

 int from_after = from_before – amount;

 int to_after = to_before + amount;

 WRITE (account[from], from_after);

 WRITE (account[to], to_after);

 END_TX();

}

Begin
transaction

Read shared
variables

Local
computation

Write shared
variable
computation

End
transaction Each transaction is guaranteed

to be “atomic”

TM Example: Runtime

Thread 1 Thread 2 Thread 3

TM
Runtime

(A C)

 Read A;
 Read C;
 ..
 Write A;
 Write C;

(B C)

 Read B;
 Read C;
 ..
 Write A;
 Write C;

(G F)

 Read G;
 Read F;
 ..
 Write G;
 Write F;

Each thread
runs its own
transaction

TM Runtime
detects data
race

TM Runtime
rolls back
conflicted TX

Back to our case

 Approaches in TM runtime implementation

 STM: all in SW lots of overhead, slow

 HTM: all in HW Requires CPU core modification

 … but you‟d rather avoid changing a commodity
core‟s RTL

 Our approach

 Part in HW, rest in SW (a hybrid approach)

 External custom HW

 Sits outside cores (on FPGA) via memory bus

 No core modification required

 External communication takes some time but we
know how to mitigate this!

Our idea in a nutshell

Core 1 Core 2 FPGA

1:Read A

1:Read C

1:Write A

1:Write C

2:Read C

Each core sends a
message to FPGA,
for each read/write.

1:Ok To
Commit?

1:OK

2:Rollback

AC CB

FPGA detects
violation and
sends
notification

“Wow, this is
so cool. Let’s
build this thing
already!”

+ Some ideas for
latency hiding on
the SW-side

+ Some ideas for
fast violation
detection on the
HW-side

Our initial co-design

 How to design a closely-coupled system?

 New HW

 New software library (STM) that uses the new HW

 Let‟s simulate it!

 Design HW/SW interface (i.e. communication protocol)

 with a cycle-based x86 ISS (Instruction-Set simulator)

 Custom HW pure virtual model

 Develop the SW on top of simulation

 What about HW design?

 Do RTL design separately

 Find RTL bugs with unit test

 High-level protocol is already validated with simulation

And there we go …

 Our simulation was successful

 Our protocol works and is faster than
conventional STM

 We obtained a HW framework

 Two sockets, each with AMD quad-core

 An FPGA connected via HyperTransport®

 We implemented a coherent cache on FPGA*

 It was a (re-usable) part of our design

 We implemented the custom HW as we
designed

 All the unit tests are passed

 So we ran the whole system ….

 … And it didn‟t work

 Transactions were not atomic at all

* Another long story

What happened..? (In retrospect)

Core 1 Core 2 FPGA

1:Write C

2:Read C

1:Ok To
Commit?

2:Rollback

What we designed What actually happened

1:OK

Core 1 Core 2 FPGA

1:Write C

2:Read C

1:Ok To
Commit?

1:OK

Read happens here

The message delivery
has been delayed
(out of order)

FPGA can’t detect the
conflict (thinks it’s a
valid read-after-write)

How could we have missed that?

 Problems with our simulator

 We used a detailed x86 ISS

 All instructions included and some cache protocols.

 But the simulated interconnect was far from that of real
HW system…

 HyperTransport + external pin-out + FPGA …

 The simulation was in-order and deterministic

 no latency variance

 Problems with unit testing

 Cannot generate the complicated error sequence!

 Requires a lot of interaction with software

A Futile Resistance

 “Hey, we already have the FPGA implementation. Let‟s just
debug it (with a logic analyzer).”

 Problem

 The „time span‟ of a typical error is very long

 It is not clear when and how the problem happens

 i.e. Error not detectable by a simple trigger

 Logic analyzer gives a limited scope in time

Timeline

CPU1

CPU N

……

100s ~ 100,000s of transactions (ms ~ secs of time)

Each TX contains R
reads and W writes

Error, if fails to detect
a conflict between any
two TXs

The error is observed
much later at time;
without knowing when
the error has happened

Limited logic analyze
scope (order of us)

What do we need?

 Verification of a concurrent system

 Interleaving of parallel executions

 Out-of-order message delivery

 Many different interleaving in a short time (i.e. fast
execution)

 Resemblance to the actual system

 Actual HW (RTL) + Actual SW debugging preferred

 Minimum modification for verification

 Crucial features for verification

 Deterministic replay – the exact same interleaving
should be generated at will

 A better mechanism for bug finding than waveform view

 Easier log analysis, at least

Comparisons of Available Tools

Method Pros Cons

Prototyping • Target HW + SW
• Fast execution

• Limited visibility
• No deterministic replay

Full RTL sim.
(CPU + interconnection +
Custom HW)

• Target HW + SW
• Deterministic replay

• All RTL not available
• Too slow
• No variation of interleaving

Binary instrumentation
(i.e. PIN-based simulation)

• Target SW
• Fast execution

• No HW debugging
• No deterministic replay

Instruction-set sim.
+ RTL sim (or virtual HW)

• Target SW
• Deterministic replay

• No variation of interleaving

SW Model
+ network sim.
(Bus Functional Model)
+ RTL sim. (or virtual HW)

• Faster than ISS

• SW modification
• Variation of interleaving?
• Deterministic replay?

[Option 1] Modify x86 ISS
• Connect ISS with network sim (BFM) +
RTL sim
• Add various interleavings?

[Option 2] Modify Target SW
• Connect SW with BFM + RTL sim
• Add various interleavings
• Add deterministic replay

• Easier to do
(you know a lot more
about SW than simulator)
• Faster to run

ISS-based approach (illustration)
void foo(…){

 BEGIN_TX();

 int … = READ(…);

 local_compute();

 WRITE (…);

 END_TX();

}

User Program

Binary

void READ(…){

 HW_check_status();

 …

 some_processing();

 HW_send_msg(); … }

TM library

Compile

inline

int HW_check_status(…)

 return

 *FPGA_ADDR & bitmask;

}

HAL (HW Abstraction Layer)

ISS
Simulator
(CPU)

(cycle-based)

Network
Simulator
(HyperTransport)

(cycle-based)

RTL
Simulator
(Custom HW)

(event-based)

• Where / How do we add various interleavings,
i.e. which simulator do we want to modify?

• A lot of simulation overhead

Do we
need CPU
simulation
at all?

BFM-based approach (illustration)
void foo(…){

 BEGIN_TX();

 int … = READ(…);

 local_compute();

 WRITE (…);

 END_TX();

}

User Program

void READ(…){

 HW_check_status();

 …

 some_processing();

 HW_send_msg(); … }

TM library

inline

int HW_check_status(…)

 return

 BFM_SIM_Read(…) &

 bitmask;

}

NEW HAL

Network
Simulator
(HyperTransport)

(cycle-based)

RTL
Simulator
(Custom HW)

(event-based)

int BFM_SIM_Read(…){

 ……

 Network_Inject_packet(READ_REQ, …);

 ……

}

Bus Functional Model (BFM)
Simulator

• HAL is re-written to
invoke BFM
methods instead

BFM directly interacts with
the Network simulator

SW + BFM + Network simulator
linked together

Our BFM Simulator

 Deterministic Concurrency Control

 BFM itself is single-threaded

 BFM uses light-weight threads (i.e. fibers) to implement
user threads in the applications

 Contexts switch happens at network packet injection

int BFM_SIM_Read(…){

 ……

 Network_Inject_packet(…);

 Context_Switch(SIM);

 ……

}

void clock(){

 for (i = 1 .. N) {

 if (thread[i].isReady()) {

 Context_Switch(thread[i]);

 …

 }

}

Network
Simulator
(cycle-based)

Our BFM Simulator

 Fast execution

 All the local computations are natively executed

 No CPU simulation at all

 We only need software interacting with HW
simulation

 Do not waste simulation cycles for computation

…

x = READ(…)

Y =

 local_compute(Y);

WRITE (Y);

User Program

void WRITE(…){

 Some_processing();

 …

 HW_send_msg(…);

}

TM library

inline

int HW_send_msg(…)

 return

 BFM_SIM_WRITE_NC(…)

}

NEW HAL

All this local computation is executed natively,
without consuming a simulation cycle

Our BFM Simulator

 Variable interleaving of concurrent executions

 + Deterministic replay

 All the local computation happens at a cycle

 Actual packet delivery time is deterministic

 Insert random idle cycles before packet injection

 Not meant to compensate for computation time

 But inserts deterministic variation in concurrent executions

 Interleaving is dependent solely on random seed

 Deterministic re-play use the same random seed

 int BFM_SIM_Read(…){

 BFM_Idle_Cycles(get_random());

 Context_Switch(SIM);

 …

 Network_Inject_packet(READ_REQ, …);

 Context_Switch(SIM);

}

Thread1

Thread N

Zero-cycle
computation

Random Idle
Cycles

Deterministic
Packet Delivery

Our BFM Simulator

 Convenient error analysis

 Logging at high-level

 at packet level, or

 at HAL level

 Automatic error detection

 Simulation = shared-memory, single threaded,
deterministic execution

 Each user thread can see what other threads are
doing

 Further modify STM

 Maintain a shadow data-structure that checks
conflicts on-line (only works for simulation)

Worked well for our case

 Fast simulation enabled many different interleaving of
concurrent executions in short time

 With this environment, we actually designed and debugged

 The Custom HW (RTL)

 The new SW (STM library)

 And the new communication protocol (system)

 All together

Environment Execution Time

Prototype HW
(1.8Ghz x86 + FPGA)

~ 10 ms

BFM + RTL sim ~ 15 mins

BFM + Virtual HW ~ 100 ms

ISS + Virtual HW ~ 100 mins

Small test-bench execution time
What we actually
used

•For comparisons.
•BFM uses much
less simulation
cycle

Generalization and Pitfalls

 Key insights

 SW modification is easier than simulator modification

 Local computation can be natively executed

 Only global communication is simulated via Network
simulation

 Caveat: Ease of SW modification

 Assumes that you can identify HW interface easily

 Assumes that you can distinguish local computation and
global communication (i.e. shared data access)

 Usually true

 Parallel SW designed with HAL and critical sections

 But you should check your SW…

 Not suitable for performance estimation

Requests for CAD Researchers

 Our approach was still ad hoc …

 Is there a more systematic solution?

 Part-wise selection of details of simulation

(e.g) Native SW execution (for local computation)

 + Detailed HW simulation (for custom HW design)

 + Detailed network simulation

 Randomizing variance of concurrent executions

 Should be deterministically re-playable

Summary

 Co-design and Co-verification for post Moore‟s
law era

 Parallelism and Heterogeneity

 Potential concurrency issues at design time

 Required Features

 Variable interleaving of concurrent executions

 Deterministic Replay

 Fast execution time + sufficient of visibility

 In our case study

 We used SW Model + BFM (interconnection) + RTL sim

 SW modification was easier than ISS improvement

 Hope there can be a generalized solution

Questions?

