

Building-Blocks for Performance Oriented DSLs

<u>Tiark Rompf</u>, Martin Odersky **EPFL**

Arvind Sujeeth, HyoukJoong Lee, Kevin Brown, Hassan Chafi, Kunle Olukotun Stanford University

DSL Benefits

Make programmers more productive

Raise the level of abstraction

Easier to reason about programs

Maintenance, verification, etc

Performance Oriented DSLs

Make compiler more productive, too!

Generate better code

Optimize using domain knowledge

Target heterogeneous + parallel hardware

DSLs under Development

Liszt (mesh based PDE solvers)

 DeVito et al.: Liszt: A Domain-Specific Language for Building Portable Mesh-based PDE solvers. Supercomputing (SC) 2011

OptiML (machine learning)

 Sujeeth et al.: OptiML: An Implicitly Parallel Domain-Specific Language for Machine Learning. International Conference for Machine Learning (ICML) 2011

OptiQL (data query)

all embedded in Scala

- heterogeneous compilation (multi core CPU/GPU)
- good absolute performance and speedups

Common DSL Infrastructure

- Don't start from scratch for each new DSL
 - It's just too hard ...
- Delite Framework + Runtime
 - See also Brown et al.: A Heterogeneous Parallel Framework for Domain-Specific Languages. PACT'11
- This Talk/Paper: Building blocks that work together in new or interesting ways

Focus on 2 things:

#1: DeliteOps

- high-level view of common execution patterns (i.e. loops)
- parallelism and heterogeneous targets

#2: Staging

- DSL programs are program generators
- move (costly) abstraction to generating stage

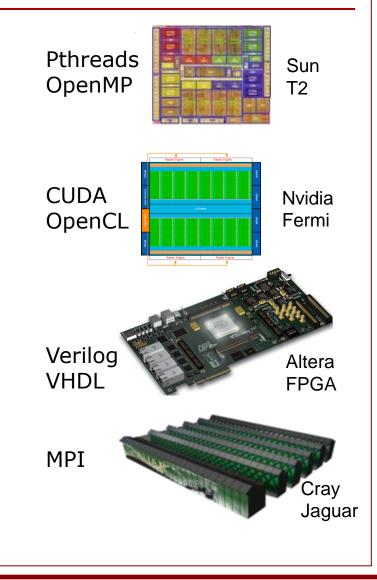
Case study: SPADE app in OptiML

#1: DeliteOps

Heterogeneous Parallel Programming

Today:

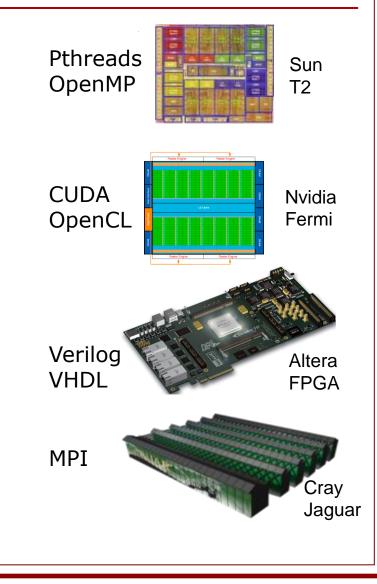
Performance = heterogeneous + parallel



Heterogeneous Parallel Programming

Compilers have not kept pace!

Your favourite Java, Haskell, Scala, C++ compiler will not generate code for these platforms.



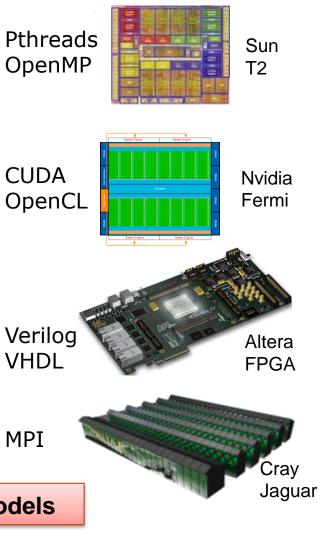
Programmability Chasm

Applications

Virtual Worlds

Personal Robotics

Data informatics



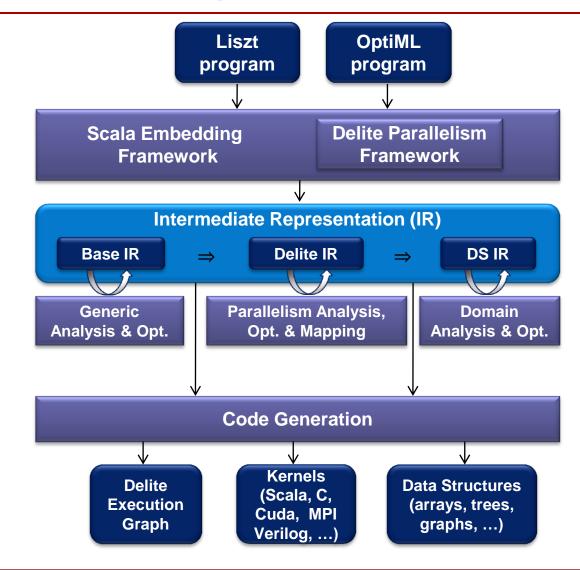
Too many different programming models

DeliteOps

- Capture common parallel execution patterns
 - map, filter, reduce, ... join, bfs, ...
- Map them efficiently to a variety of target platforms
 - Multi core CPU, GPU

Express your DSL as DeliteOps => Parallelism for free!

Delite DSL Compiler



Delite Op Fusion

- Operates on all loop-based ops
- Reduces op overhead and improves locality
 - Elimination of temporary data structures
 - Merging loop bodies may enable further optimizations
- Fuse both dependent and side-by-side operations
 - Fused ops can have multiple inputs + outputs
- Algorithm: fuse two loops if
 - size(loop1) == size(loop2)
 - No mutual dependencies (which aren't removed by fusing)

Delite Op Fusion

```
// begin reduce x47,x51,x11
def square(x: Rep[Double]) = x*x
                                                   var x47 = 0
                                                   var x51 = 0
def mean(xs: Rep[Array[Double]]) =
                                                   var x11 = 0
         xs.sum / xs.length
                                                   while (x11 < x0) {
                                                      val x44 = 2.0*x11
def variance(xs: Rep[Array[Double]]) =
                                                      val x45 = 1.0+x44
         xs.map(square) / xs.length - square(me
                                                      val x50 = x45*x45
                                                      x47 += x45
                                                      x51 += x50
val array1 = Array.fill(n) { i => 1 }
                                                      x11 += 1
val array2 = Array.fill(n) { i => 2*i }
val array3 = Array.fill(n) { i => array1(i) + // end reduce
                                                  val x48 = x47/x0
                                                  val x49 = println(x48)
val m = mean(array3)
                                                 val x52 = x51/x0
val v = variance(array3)
                                                  val x53 = x48 \times x48
                                                 val x54 = x52 - x53
println(m)
                                                  val x55 = println(x54)
println(v)
                                                      1 traversal, 0 arrays
3+1+(1+1) = 6 traversals, 4 arrays
```

#2: Staging

How do we go from DSL source to DeliteOps?

2 Challenges:

#1: generate intermediate representation (IR) from DSL code embedded in Scala

#2: do it in such a way that the IR is free from unnecessary abstraction

Avoid abstraction penalty!

Example prog DSL interface		DSL val v = Vector.rand(100) program println("today's lucky nun println(v.sum)		,	⁻ is: ")
		act class Vector			type
DSL imlpl.	<pre>def vector_rand(n: Rep[Int]): Rep[Vector[Double]] def infix_sum[T:Numeric](v: Rep[Vector[T]]): Rep[T]</pre>				
case class VectorRand(n: Exp[Int]) extends Def[Vector[Double] type Rep[T] = Exp[T] case class VectorSum[T:Numeric](in: Exp[Vector[T]]) Exp[T] extends DeliteOpReduce[Exp[T]] { def func = (a,b) => a + b } class Exp[T]					
<pre>def vector_rand(n: Exp[Int]) = new VectorRand(n) def infix_sum[T:Numeric](v: Exp[Vector[T]]) = new VectorSum(v)</pre>					class Def[T]

"Finally Tagless" / Polymorphic embedding

- Carette, Kiselyov, Shan: Finally Tagless, Partially Evaluated: Tagless Staged Interpreters for Simpler Typed Languages. APLAS'07/J. Funct. Prog. 2009.
- Hofer, Ostermann, Rendel, Moors: Polymorphic Embeddings of DSLs. GPCE'08.

Lightweight Modular Staging (LMS)

 Rompf, Odersky: Lightweight Modular Staging: A Pragmatic Approach to Runtime Code Generation and Compiled DSLs. GPCE'10. Can use the full host language to compose DSL program fragments!

Move (costly) abstraction to the generating stage

Example

Use higher order functions in DSL programs

While keeping the DSL first order!

Higher-Order functions

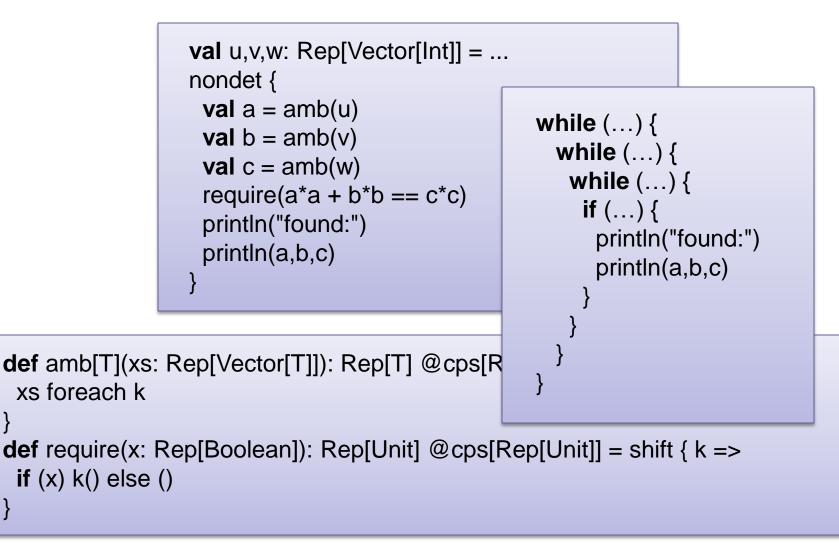
val xs: Rep[Vector[Int]] = ...
println(xs.count(x => x > 7))

def infix_foreach[A](v: Rep[Vector[A]])(f:
 var i: Rep[Int] = 0
 while (i < v.length) {
 f(v(i))
 i += 1
 }
}</pre>

def infix_count[A](v: Rep[Vector[A]])(f: Reveal of the content of the conten

val v: Array[Int] = ...
var c = 0
var i = 0
while (i < v.length) {
 val x = v(i)
 if (x > 7)
 c += 1
 i += 1
}
println(c)

Continuations



Result

Function values and continuations translated away by staging

- Control flow strictly first order
- Much simpler analysis for other optimizations

Regular Compiler optimizations

Common subexpression and dead code elimination

Global code motion

Symbolic execution / pattern rewrites

Coarse-grained: optimizations can happen on vectors, matrices or whole loops

In the Paper:

Removing data structure abstraction

Partial evaluation/symbolic execution of staged IR

Effect abstractions

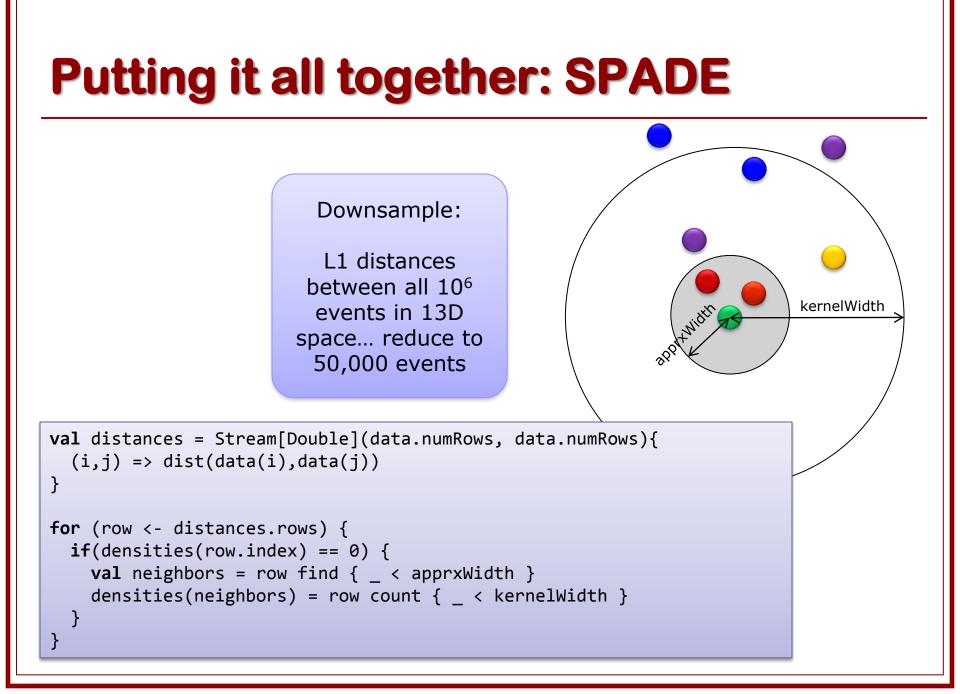
Extending the framework/modularity

Case Study: OptiML

A DSL For Machine Learning

OptiML: A DSL For Machine Learning

- Provides a familiar (MATLAB-like) language and API for writing ML applications
 - Ex. val c = a * b (a, b are Matrix[Double])
- Implicitly parallel data structures
 - General data types: Vector[T], Matrix[T], Graph[V,E]
 - Independent from the underlying implementation
 - Specialized data types: Stream, TrainingSet, TestSet, IndexVector, Image, Video ..
 - Encode semantic information & structured, synchronized communication
- Implicitly parallel control structures
 - sum{...}, (0::end) {...}, gradient { ... }, untilconverged { ... }
 - Allow anonymous functions with restricted semantics to be passed as arguments of the control structures



SPADE transformations

```
val distances = Stream[Double](data.numRows, data.numRows){
  (i,j) => dist(data(i),data(j))
}
```

```
for (row <- distances.rows) {</pre>
  row.init // expensive! part of the stream foreach operation
  if(densities(row.index) == 0) {
    val neighbors = row find { _ < apprxWidth }</pre>
    densities(neighbors) = row count { _ < kernelWidth }</pre>
                               row is 235,000 elements
                               in one typical dataset -
                               fusing is a big win!
```

SPADE generated code

```
// FOR EACH ELEMENT IN ROW
while (x155 < x61) {
    val x168 = x155 * x64
    var x180 = 0</pre>
```

```
// INITIALIZE STREAM VALUE (dist(i,j))
while (x180 < x64) {
    val x248 = x164 + x180
    // ...
}</pre>
```

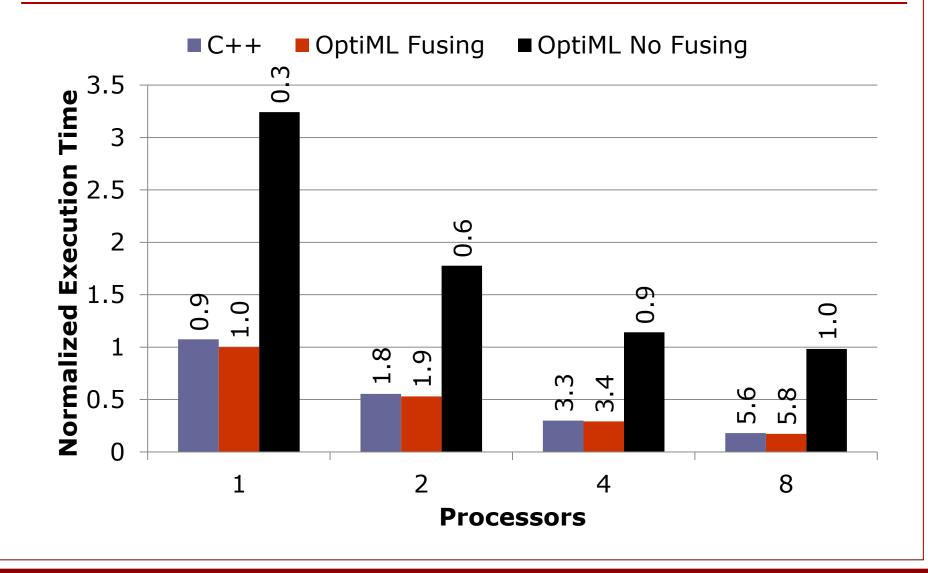
// VECTOR FIND
if (x245) x201.insert(x201.length, x155)

```
// VECTOR COUNT
if (x246) {
    val x207 = x208 + 1
    x208 = x207
}
x155 += 1
```

From a ~5 line algorithm description in OptiML

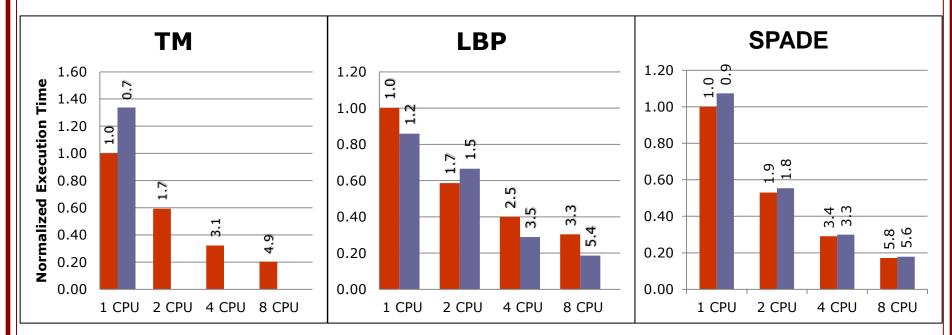
...to an efficient, fused, imperative version that closely resembles a hand-optimized C++ baseline!

Impact of Op Fusion



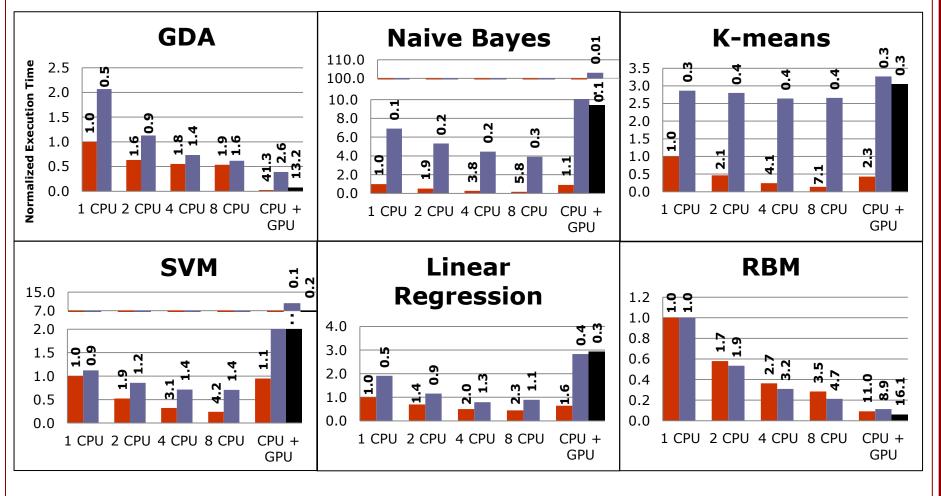
Experiments on larger apps

■ OptiML ■ C++



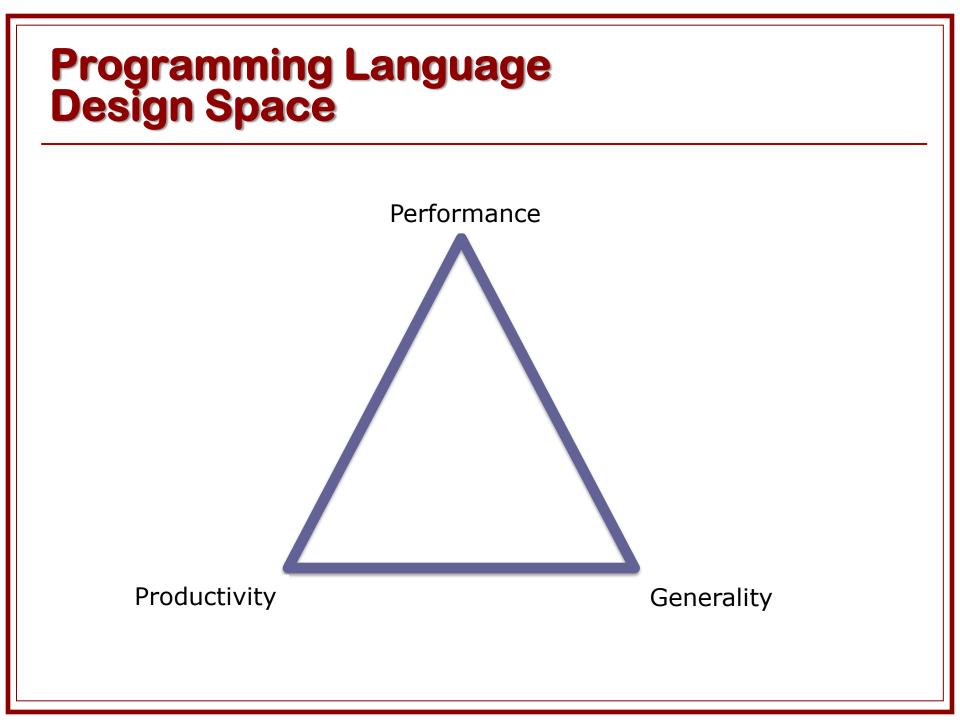
Experiments on ML kernels

■ OptiML ■ Parallelized MATLAB ■ MATLAB + Jacket



Summary

- Performance oriented DSLs are a promising parallel programming platform
 - Capable of achieving portability, productivity, and high performance
- Delite can simplify the task of implementing DSLs
- OptiML outperforms MATLAB and C++ on a set of well known machine learning applications, with expressive code

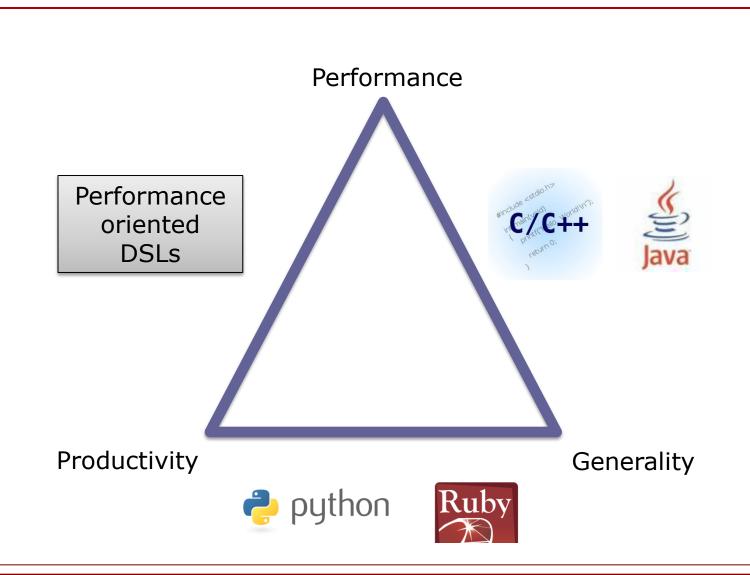


Programming Language Design Space

Productivity

Generality

General Purpose Languages



DSLs Present New Problem

We need to develop all these DSLs

Current DSL methods are unsatisfactory

Current DSL Development Approaches

Stand-alone DSLs

- Can include extensive optimizations
- Enormous effort to develop to a sufficient degree of maturity
 - Actual Compiler/Optimizations
 - Tooling (IDE, Debuggers,...)
- Interoperation between multiple DSLs is very difficult
- Purely embedded DSLs \Rightarrow "just a library"
 - Easy to develop (can reuse full host language)
 - Easier to learn DSL
 - Can Combine multiple DSLs in one program
 - Can Share DSL infrastructure among several DSLs
 - Hard to optimize using domain knowledge
 - Target same architecture as host language

Need to do better

DSLs: trade off generality for productivity and performance

DSL embedding:

 Combine benefits of pure embedding with analyzability of external dsls