

Building-Blocks for

Performance Oriented DSLs

 Tiark Rompf, Martin Odersky

EPFL

Arvind Sujeeth, HyoukJoong Lee, Kevin Brown,
Hassan Chafi, Kunle Olukotun

Stanford University

DSL Benefits

Make programmers more productive

 Raise the level of abstraction

 Easier to reason about programs

 Maintenance, verification, etc

Performance Oriented DSLs

Make compiler more productive, too!

 Generate better code

 Optimize using domain knowledge

 Target heterogeneous + parallel hardware

DSLs under Development

 Liszt (mesh based PDE solvers)
 DeVito et al.: Liszt: A Domain-Specific Language for Building Portable

Mesh-based PDE solvers. Supercomputing (SC) 2011

 OptiML (machine learning)
 Sujeeth et al.: OptiML: An Implicitly Parallel Domain-Specific Language

for Machine Learning. International Conference for Machine Learning
(ICML) 2011

 OptiQL (data query)

 all embedded in Scala

 heterogeneous compilation (multi core CPU/GPU)

 good absolute performance and speedups

Common DSL Infrastructure

 Don’t start from scratch for each new DSL
 It’s just too hard …

 Delite Framework + Runtime
 See also Brown et al.: A Heterogeneous Parallel Framework for

Domain-Specific Languages. PACT’11

 This Talk/Paper: Building blocks
that work together in new or
interesting ways

Focus on 2 things:

 #1: DeliteOps
 high-level view of common execution

patterns (i.e. loops)

 parallelism and heterogeneous targets

 #2: Staging
 DSL programs are program generators

 move (costly) abstraction to generating stage

 Case study: SPADE app in OptiML

#1: DeliteOps

Heterogeneous Parallel
Programming

Cray

Jaguar

Sun

T2

Nvidia

Fermi

Altera

FPGA

MPI

Pthreads
OpenMP

CUDA
OpenCL

Verilog
VHDL

Today:

Performance
= heterogeneous
+ parallel

Heterogeneous Parallel
Programming

Cray

Jaguar

Sun

T2

Nvidia

Fermi

Altera

FPGA

MPI

Pthreads
OpenMP

CUDA
OpenCL

Verilog
VHDL

Your favourite Java,
Haskell, Scala, C++
compiler will not
generate code for
these platforms.

Compilers
have not
kept pace!

Programmability Chasm

Too many different programming models

Cray

Jaguar

Sun

T2

Nvidia

Fermi

Altera

FPGA

MPI

Pthreads
OpenMP

CUDA
OpenCL

Verilog
VHDL

Virtual

Worlds

Personal

Robotics

Data
informatics

Scientific

Engineering

Applications

DeliteOps

 Capture common parallel execution
patterns
 map, filter, reduce, … join, bfs, …

 Map them efficiently to a variety of
target platforms
 Multi core CPU, GPU

 Express your DSL as DeliteOps
 => Parallelism for free!

Intermediate Representation (IR)

Delite DSL Compiler

 Provide a common IR that
can be extended while still
benefitting from generic
analysis and opt.

 Extend common IR and
provide IR nodes that
encode data parallel
execution patterns

 Now can do parallel
optimizations and
mapping

 DSL extends appropriate
data parallel nodes for
their operations

 Now can do domain-
specific analysis and opt.

 Generate an execution
graph, kernels and data
structures

 Scala Embedding

 Framework

Delite

Execution

Graph

Delite Parallelism

Framework

Base IR

Generic

Analysis & Opt.

Code Generation

Kernels

(Scala, C,

Cuda, MPI

Verilog, …)

Liszt

program

OptiML

program

DS IR

Domain

Analysis & Opt.

Delite IR

Parallelism Analysis,

Opt. & Mapping

⇒ ⇒

Data Structures

(arrays, trees,

graphs, …)

Delite Op Fusion

 Operates on all loop-based ops

 Reduces op overhead and improves locality

 Elimination of temporary data structures

 Merging loop bodies may enable further optimizations

 Fuse both dependent and side-by-side operations

 Fused ops can have multiple inputs + outputs

 Algorithm: fuse two loops if

 size(loop1) == size(loop2)

 No mutual dependencies (which aren’t removed by fusing)

Delite Op Fusion

def square(x: Rep[Double]) = x*x

def mean(xs: Rep[Array[Double]]) =
 xs.sum / xs.length

def variance(xs: Rep[Array[Double]]) =
 xs.map(square) / xs.length - square(mean(xs))

val array1 = Array.fill(n) { i => 1 }
val array2 = Array.fill(n) { i => 2*i }
val array3 = Array.fill(n) { i => array1(i) + array2(i) }

val m = mean(array3)
val v = variance(array3)

println(m)
println(v)

// begin reduce x47,x51,x11
 var x47 = 0
 var x51 = 0
 var x11 = 0
 while (x11 < x0) {
 val x44 = 2.0*x11
 val x45 = 1.0+x44
 val x50 = x45*x45
 x47 += x45
 x51 += x50
 x11 += 1
 }
// end reduce
val x48 = x47/x0
val x49 = println(x48)
val x52 = x51/x0
val x53 = x48*x48
val x54 = x52-x53
val x55 = println(x54)

3+1+(1+1) = 6 traversals, 4 arrays 1 traversal, 0 arrays

#2: Staging

How do we go from DSL source
to DeliteOps?

2 Challenges:

 #1: generate intermediate
representation (IR) from DSL code
embedded in Scala

 #2: do it in such a way that the IR is
free from unnecessary abstraction

 Avoid abstraction penalty!

Example
val v = Vector.rand(100)

println("today’s lucky number is: ")

println(v.sum)

abstract class Vector[T]

def vector_rand(n: Rep[Int]): Rep[Vector[Double]]

def infix_sum[T:Numeric](v: Rep[Vector[T]]): Rep[T]

DSL
program

DSL
interface

case class VectorRand(n: Exp[Int]) extends Def[Vector[Double]

case class VectorSum[T:Numeric](in: Exp[Vector[T]])

extends DeliteOpReduce[Exp[T]] {

 def func = (a,b) => a + b

}

def vector_rand(n: Exp[Int]) = new VectorRand(n)

def infix_sum[T:Numeric](v: Exp[Vector[T]]) = new VectorSum(v)

type

Rep[T]

type

Rep[T] =

Exp[T]

class

Exp[T]

class

Def[T]

DSL
imlpl.

 “Finally Tagless” / Polymorphic
embedding
 Carette, Kiselyov, Shan: Finally Tagless, Partially Evaluated: Tagless

Staged Interpreters for Simpler Typed Languages. APLAS’07/J. Funct.
Prog. 2009.

 Hofer, Ostermann, Rendel, Moors: Polymorphic Embeddings of DSLs.
GPCE’08.

 Lightweight Modular Staging (LMS)
 Rompf, Odersky: Lightweight Modular Staging: A Pragmatic

Approach to Runtime Code Generation and Compiled DSLs.
GPCE’10.

 Can use the full host language to
compose DSL program fragments!

 Move (costly) abstraction to the
generating stage

Example

 Use higher order functions in DSL
programs

 While keeping the DSL first order!

Higher-Order functions

val xs: Rep[Vector[Int]] = …

println(xs.count(x => x > 7))

 def infix_foreach[A](v: Rep[Vector[A]])(f: Rep[A] => Rep[Unit]) = {

 var i: Rep[Int] = 0

 while (i < v.length) {

 f(v(i))

 i += 1

 }

 }

 def infix_count[A](v: Rep[Vector[A]])(f: Rep[A] => Rep[Boolean]) = {

 var c: Rep[Int] = 0

 v foreach { x => if (f(x)) c += 1 }

 c

 }

 val v: Array[Int] = ...

 var c = 0

 var i = 0

 while (i < v.length) {

 val x = v(i)

 if (x > 7)

 c += 1

 i += 1

 }

 println(c)

Continuations

 val u,v,w: Rep[Vector[Int]] = ...

 nondet {

 val a = amb(u)

 val b = amb(v)

 val c = amb(w)

 require(a*a + b*b == c*c)

 println("found:")

 println(a,b,c)

 }

 def amb[T](xs: Rep[Vector[T]]): Rep[T] @cps[Rep[Unit]] = shift { k =>

 xs foreach k

 }

 def require(x: Rep[Boolean]): Rep[Unit] @cps[Rep[Unit]] = shift { k =>

 if (x) k() else ()

 }

while (…) {

 while (…) {

 while (…) {

 if (…) {

 println("found:")

 println(a,b,c)

 }

 }

 }

}

Result

 Function values and continuations
translated away by staging

 Control flow strictly first order

 Much simpler analysis for other
optimizations

Regular Compiler optimizations

 Common subexpression and dead
code elimination

 Global code motion

 Symbolic execution / pattern rewrites

Coarse-grained: optimizations can happen on
vectors, matrices or whole loops

In the Paper:

 Removing data structure abstraction

 Partial evaluation/symbolic execution
of staged IR

 Effect abstractions

 Extending the framework/modularity

Case Study:
OptiML

A DSL For Machine Learning

OptiML: A DSL For Machine Learning

 Provides a familiar (MATLAB-like) language and
API for writing ML applications
 Ex. val c = a * b (a, b are Matrix[Double])

 Implicitly parallel data structures
 General data types: Vector[T], Matrix[T], Graph[V,E]

 Independent from the underlying implementation

 Specialized data types: Stream, TrainingSet, TestSet,
IndexVector, Image, Video ..

 Encode semantic information & structured, synchronized
communication

 Implicitly parallel control structures
 sum{…}, (0::end) {…}, gradient { … }, untilconverged { … }

 Allow anonymous functions with restricted semantics to be
passed as arguments of the control structures

Putting it all together: SPADE

kernelWidth

Downsample:

L1 distances
between all 106
events in 13D

space… reduce to
50,000 events

val distances = Stream[Double](data.numRows, data.numRows){
 (i,j) => dist(data(i),data(j))
}

for (row <- distances.rows) {
 if(densities(row.index) == 0) {
 val neighbors = row find { _ < apprxWidth }
 densities(neighbors) = row count { _ < kernelWidth }
 }
}

val distances = Stream[Double](data.numRows, data.numRows){

 (i,j) => dist(data(i),data(j))

}

for (row <- distances.rows) {

 row.init // expensive! part of the stream foreach operation

 if(densities(row.index) == 0) {

 val neighbors = row find { _ < apprxWidth }

 densities(neighbors) = row count { _ < kernelWidth }

 }

}

SPADE transformations

row is 235,000 elements

in one typical dataset –

fusing is a big win!

SPADE generated code

// FOR EACH ELEMENT IN ROW

while (x155 < x61) {

 val x168 = x155 * x64

 var x180 = 0

 // INITIALIZE STREAM VALUE (dist(i,j))

 while (x180 < x64) {

 val x248 = x164 + x180

 // …

 }

 // VECTOR FIND

 if (x245) x201.insert(x201.length, x155)

 // VECTOR COUNT

 if (x246) {

 val x207 = x208 + 1

 x208 = x207

 }

 x155 += 1

}

From a ~5 line
algorithm
description in
OptiML

…to an efficient,
fused, imperative
version that
closely resembles
a hand-optimized
C++ baseline!

Impact of Op Fusion

0
.9

1
.8

3
.3

5
.6

1
.0

1
.9

3
.4

5
.8

0
.3

0
.6

0
.9

1
.0

0

0.5

1

1.5

2

2.5

3

3.5

1 2 4 8

N
o

r
m

a
li
z
e
d

 E
x
e
c
u

ti
o

n
 T

im
e

Processors

C++ OptiML Fusing OptiML No Fusing

Experiments on larger apps
1
.0

1
.7

3
.1

4
.9

0
.7

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1 CPU 2 CPU 4 CPU 8 CPU

N
o

r
m

a
li
z
e
d

 E
x
e
c
u

ti
o
n

 T
im

e

TM

OptiML C++

1
.0

1
.9

3
.4

5
.8

0
.9

1
.8

3
.3

5
.6

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1 CPU 2 CPU 4 CPU 8 CPU

SPADE

1
.0

1
.7

2
.5

3
.3

1
.2

1
.5

3
.5

5
.4

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1 CPU 2 CPU 4 CPU 8 CPU

LBP

Experiments on ML kernels
1

.0

1
.6

1
.8

1
.9

4
1

.3

0
.5

0
.9

1
.4

1
.6

2
.6

1
3

.2

0.0

0.5

1.0

1.5

2.0

2.5

1 CPU 2 CPU 4 CPU 8 CPU CPU +

GPUN
o

r
m

a
li

z
e
d

 E
x
e
c
u

ti
o

n
 T

im
e

GDA

1
.0

2
.1

4
.1

7
.1

 2
.3

0
.3

0
.4

0
.4

0
.4

 0
.3

0
.3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1 CPU 2 CPU 4 CPU 8 CPU CPU +

GPU

K-means

1
.0

1
.7

2
.7

3
.5

1
1

.0

1
.0

1
.9

3
.2

4
.7

8
.9

1
6

.1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 CPU 2 CPU 4 CPU 8 CPU CPU +

GPU

RBM

1
.0

1
.9

3
.8

5
.8

1
.1

0
.1

0
.2

0
.2

0
.3

0
.1

0.0

2.0

4.0

6.0

8.0

10.0

1 CPU 2 CPU 4 CPU 8 CPU CPU +

GPU

0
.0

1

100.0

110.0

Naive Bayes

..

1
.0

1
.4

2
.0

2
.3

1
.6

0
.5

0
.9

1
.3

1
.1

0
.4

0
.3

0.0

1.0

2.0

3.0

4.0

1 CPU 2 CPU 4 CPU 8 CPU CPU +
GPU

Linear
Regression

1
.0

1
.9

3
.1

4
.2

1
.1

0
.9

1
.2

1
.4

1
.4

0.0

0.5

1.0

1.5

2.0

1 CPU 2 CPU 4 CPU 8 CPU CPU +

GPU

0
.1

7.0

15.0

SVM

..

0
.2

OptiML Parallelized MATLAB MATLAB + Jacket

Summary

 Performance oriented DSLs are a promising
parallel programming platform
 Capable of achieving portability, productivity, and

high performance

 Delite can simplify the task of implementing
DSLs

 OptiML outperforms MATLAB and C++ on a
set of well known machine learning
applications, with expressive code

Questions?

Performance

Productivity Generality

Programming Language
Design Space

Performance

Productivity Generality

Programming Language
Design Space

General Purpose Languages

Performance

Productivity Generality

Performance
oriented

DSLs

We need to develop all these DSLs

Current DSL methods are unsatisfactory

DSLs Present New Problem

Current DSL Development Approaches

 Stand-alone DSLs
 Can include extensive optimizations
 Enormous effort to develop to a sufficient degree of maturity

 Actual Compiler/Optimizations
 Tooling (IDE, Debuggers,…)

 Interoperation between multiple DSLs is very difficult

 Purely embedded DSLs ⇒ “just a library”
 Easy to develop (can reuse full host language)
 Easier to learn DSL
 Can Combine multiple DSLs in one program
 Can Share DSL infrastructure among several DSLs
 Hard to optimize using domain knowledge
 Target same architecture as host language

Need to do better

 DSLs: trade off generality for
productivity and performance

 DSL embedding:

 Combine benefits of pure embedding with

analyzability of external dsls

