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DSL Benefits 

 

Make programmers more productive 
 

 Raise the level of abstraction 

 

 Easier to reason about programs 

 

 Maintenance, verification, etc 



Performance Oriented DSLs 

 

Make compiler more productive, too! 
 

 Generate better code 

 

 Optimize using domain knowledge 

 

 Target heterogeneous + parallel hardware 



DSLs under Development 

 Liszt (mesh based PDE solvers) 
 DeVito et al.: Liszt: A Domain-Specific Language for Building Portable 

Mesh-based PDE solvers. Supercomputing (SC) 2011 

 OptiML (machine learning) 
 Sujeeth et al.: OptiML: An Implicitly Parallel Domain-Specific Language 

for Machine Learning. International Conference for Machine Learning 
(ICML) 2011 

 OptiQL (data query) 

 

 all embedded in Scala 

 heterogeneous compilation (multi core CPU/GPU) 

 good absolute performance and speedups 



Common DSL Infrastructure 

 Don’t start from scratch for each new DSL 
 It’s just too hard … 

 

 Delite Framework + Runtime 
 See also Brown et al.: A Heterogeneous Parallel Framework for 

Domain-Specific Languages. PACT’11 

 

 This Talk/Paper: Building blocks  
that work together in new or  
interesting ways 

 
 



Focus on 2 things: 

 #1: DeliteOps  
 high-level view of common execution 

patterns (i.e. loops) 

 parallelism and heterogeneous targets 

 

 #2: Staging 
 DSL programs are program generators 

 move (costly) abstraction to generating stage 

 

 Case study: SPADE app in OptiML 



#1: DeliteOps 
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Your favourite Java,  
Haskell, Scala, C++ 
compiler will not 
generate code for 
these platforms. 

Compilers  
have not  
kept pace! 
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DeliteOps 

 Capture common parallel execution 
patterns  
 map, filter, reduce, … join, bfs, … 

 

 Map them efficiently to a variety of 
target platforms 
 Multi core CPU, GPU 

 

 Express your DSL as DeliteOps  
 => Parallelism for free! 



Intermediate Representation (IR) 

Delite DSL Compiler 

 Provide a common IR that 
can be extended while still 
benefitting from generic 
analysis and opt. 

 Extend common IR and 
provide IR nodes that 
encode data parallel 
execution patterns 

 Now can do parallel 
optimizations and 
mapping 

 DSL extends appropriate 
data parallel nodes for 
their operations 

 Now can do domain-
specific analysis and opt.  

 Generate an execution 
graph, kernels and data 
structures 
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Delite Op Fusion 

 Operates on all loop-based ops 

 

 Reduces op overhead and improves locality 

 Elimination of temporary data structures 

 Merging loop bodies may enable further optimizations 

 

 Fuse both dependent and side-by-side operations 

 Fused ops can have multiple inputs + outputs 

 

 Algorithm: fuse two loops if 

 size(loop1) == size(loop2) 

 No mutual dependencies (which aren’t removed by fusing) 

 



Delite Op Fusion 

def square(x: Rep[Double]) = x*x 
 
def mean(xs: Rep[Array[Double]])  =  
 xs.sum / xs.length 
 
def variance(xs: Rep[Array[Double]])  = 
 xs.map(square) / xs.length - square(mean(xs)) 
 
 
val array1 = Array.fill(n) { i => 1 } 
val array2 = Array.fill(n) { i => 2*i } 
val array3 = Array.fill(n) { i => array1(i) + array2(i) } 
 
val m = mean(array3) 
val v = variance(array3) 
 
println(m) 
println(v) 

// begin reduce x47,x51,x11 
  var x47 = 0     
  var x51 = 0     
  var x11 = 0     
  while (x11 < x0) { 
     val x44 = 2.0*x11 
     val x45 = 1.0+x44 
     val x50 = x45*x45       
     x47 += x45       
     x51 += x50       
     x11 += 1 
  } 
// end reduce 
val x48 = x47/x0 
val x49 = println(x48) 
val x52 = x51/x0     
val x53 = x48*x48 
val x54 = x52-x53 
val x55 = println(x54)     

3+1+(1+1) = 6 traversals, 4 arrays 1 traversal, 0 arrays 



#2: Staging 

How do we go from DSL source 
to DeliteOps? 



2 Challenges: 

 #1: generate intermediate 
representation (IR) from DSL code 
embedded in Scala 

 

 #2: do it in such a way that the IR is 
free from unnecessary abstraction 

 

 Avoid abstraction penalty! 



Example 
val v = Vector.rand(100)  

 

println("today’s lucky number is: ")  

println(v.sum) 

abstract class Vector[T] 

 

def vector_rand(n: Rep[Int]): Rep[Vector[Double]] 

 

def infix_sum[T:Numeric](v: Rep[Vector[T]]): Rep[T] 

DSL 
program 

DSL 
interface 

case class VectorRand(n: Exp[Int]) extends Def[Vector[Double] 

 

case class VectorSum[T:Numeric](in: Exp[Vector[T]])  

extends DeliteOpReduce[Exp[T]] { 

    def func = (a,b) => a + b 

} 

def vector_rand(n: Exp[Int]) = new VectorRand(n) 

def infix_sum[T:Numeric](v: Exp[Vector[T]]) = new VectorSum(v) 

type 

Rep[T] 

type  

Rep[T] = 

Exp[T] 

 

class 

Exp[T] 

 

class 

Def[T] 

DSL 
imlpl. 



 “Finally Tagless” / Polymorphic 
embedding 
 Carette, Kiselyov, Shan: Finally Tagless, Partially Evaluated: Tagless 

Staged Interpreters for Simpler Typed Languages. APLAS’07/J. Funct. 
Prog. 2009. 

 Hofer, Ostermann, Rendel, Moors: Polymorphic Embeddings of DSLs. 
GPCE’08. 

 

 Lightweight Modular Staging (LMS) 
 Rompf, Odersky: Lightweight Modular Staging: A Pragmatic 

Approach to Runtime Code Generation and Compiled DSLs. 
GPCE’10. 

 

 

 

 



 Can use the full host language to 
compose DSL program fragments! 

 

 Move (costly) abstraction to the 
generating stage 



Example 

 Use higher order functions in DSL 
programs 

 

 While keeping the DSL first order! 



Higher-Order functions 

val xs: Rep[Vector[Int]] = … 

println(xs.count(x => x > 7)) 

 def infix_foreach[A](v: Rep[Vector[A]])(f: Rep[A] => Rep[Unit]) = { 

    var i: Rep[Int] = 0 

    while (i < v.length) { 

      f(v(i)) 

      i += 1 

    } 

  } 

 def infix_count[A](v: Rep[Vector[A]])(f: Rep[A] => Rep[Boolean]) = { 

    var c: Rep[Int] = 0 

    v foreach { x => if (f(x)) c += 1 } 

    c 

  } 

  val v: Array[Int] = ... 

  var c = 0 

  var i = 0 

  while (i < v.length) { 

    val x = v(i) 

    if (x > 7) 

      c += 1 

    i += 1 

  } 

  println(c) 



Continuations 

  val u,v,w: Rep[Vector[Int]] = ... 

  nondet { 

    val a = amb(u) 

    val b = amb(v) 

    val c = amb(w) 

    require(a*a + b*b == c*c) 

    println("found:") 

    println(a,b,c) 

  } 

  def amb[T](xs: Rep[Vector[T]]): Rep[T] @cps[Rep[Unit]] = shift { k => 

    xs foreach k 

  }   

  def require(x: Rep[Boolean]): Rep[Unit] @cps[Rep[Unit]] = shift { k =>  

    if (x) k() else () 

  } 

while (…) { 

   while (…) { 

     while (…) { 

       if (…) {  

         println("found:") 

         println(a,b,c) 

       } 

     } 

   } 

} 



Result 

 Function values and continuations 
translated away by staging 

 

 Control flow strictly first order 

 

 Much simpler analysis for other 
optimizations 



Regular Compiler optimizations 

 Common subexpression and dead 
code elimination 

 

 Global code motion 

 

 Symbolic execution / pattern rewrites 

 
Coarse-grained: optimizations can happen on 
vectors, matrices or whole loops 



In the Paper: 

 Removing data structure abstraction 

 

 Partial evaluation/symbolic execution 
of staged IR 

 

 Effect abstractions 

 

 Extending the framework/modularity 



Case Study: 
OptiML 

A DSL For Machine Learning 



OptiML: A DSL For Machine Learning 

 Provides a familiar (MATLAB-like) language and 
API for writing ML applications 
 Ex. val c = a * b (a, b are Matrix[Double])  

 

 Implicitly parallel data structures 
 General data types: Vector[T], Matrix[T], Graph[V,E] 

 Independent from the underlying implementation 

 Specialized data types: Stream, TrainingSet, TestSet, 
IndexVector, Image, Video .. 

 Encode semantic information & structured, synchronized 
communication 

 

 Implicitly parallel control structures 
 sum{…}, (0::end) {…}, gradient { … },  untilconverged { … } 

 Allow anonymous functions with restricted semantics to be 
passed as arguments of the control structures 



Putting it all together: SPADE 

kernelWidth 

Downsample: 
 

L1 distances 
between all 106 
events in 13D 

space… reduce to 
50,000 events 

val distances = Stream[Double](data.numRows, data.numRows){ 
  (i,j) => dist(data(i),data(j)) 
} 
 
for (row <- distances.rows) { 
  if(densities(row.index) == 0) {  
    val neighbors = row find { _ < apprxWidth } 
    densities(neighbors) = row count { _ < kernelWidth } 
  } 
} 



val distances = Stream[Double](data.numRows, data.numRows){ 

  (i,j) => dist(data(i),data(j)) 

} 

 

for (row <- distances.rows) { 

  row.init // expensive! part of the stream foreach operation 

  if(densities(row.index) == 0) {  

    val neighbors = row find { _ < apprxWidth } 

    densities(neighbors) = row count { _ < kernelWidth } 

  } 

} 

 

SPADE transformations 

row is 235,000 elements 

in one typical dataset – 

fusing is a big win! 



SPADE generated code 

// FOR EACH ELEMENT IN ROW 

while (x155 < x61) { 

   val x168 = x155 * x64 

   var x180 = 0 

 

   // INITIALIZE STREAM VALUE (dist(i,j)) 

   while (x180 < x64) { 

      val x248 = x164 + x180 

 // … 

   } 

 

   // VECTOR FIND 

   if (x245) x201.insert(x201.length, x155) 

 

   // VECTOR COUNT 

   if (x246) { 

      val x207 = x208 + 1 

      x208 = x207 

   } 

   x155 += 1 

} 

From a ~5 line 
algorithm 
description in 
OptiML 
 

…to an efficient, 
fused, imperative 
version that 
closely resembles 
a hand-optimized 
C++ baseline! 



Impact of Op Fusion 
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Experiments on larger apps 
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Experiments on ML kernels 
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GDA 
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Summary 

 Performance oriented DSLs are a promising 
parallel programming platform 
 Capable of achieving portability, productivity, and 

high performance 

 

 Delite can simplify the task of implementing 
DSLs 

 

 OptiML outperforms MATLAB and C++ on a 
set of well known machine learning 
applications, with expressive code 



Questions? 
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Performance 
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General Purpose Languages 

Performance 

Productivity Generality 

Performance 
oriented 

DSLs 



 
We need to develop all these DSLs 

 
  

Current DSL methods are unsatisfactory 
 

DSLs Present New Problem 



Current DSL Development Approaches 

 Stand-alone DSLs 
 Can include extensive optimizations 
 Enormous effort to develop to a sufficient degree of maturity 

 Actual Compiler/Optimizations 
 Tooling (IDE, Debuggers,…) 

 Interoperation between multiple DSLs is very difficult 
 

 Purely embedded DSLs ⇒ “just a library” 
 Easy to develop (can reuse full host language) 
 Easier to learn DSL  
 Can Combine multiple DSLs in one program 
 Can Share DSL infrastructure among several DSLs 
 Hard to optimize using domain knowledge 
 Target same architecture as host language 

 
 

Need to do better 



 DSLs: trade off generality for 
productivity and performance 

 

 DSL embedding: 

 
 Combine benefits of pure embedding with 

analyzability of external dsls 

 


