A Large-scale Architecture for Restricted Boltzmann Machines

Sang Kyun Kim, Peter L. McMahon, Kunle Olukotun
Department of Electrical Engineering
Stanford University
Stanford, California, United States
{skkim38,pmcmahon, kunle} @ stanford.edu

Abstract—Deep Belief Nets (DBNs) are an emerging appli-
cation in the machine learning domain, which use Restricted
Boltzmann Machines (RBMs) as their basic building block.
Although small scale DBNs have shown great potential, the
computational cost of RBM training has been a major challenge
in scaling to large networks. In this paper we present a
highly scalable architecture for Deep Belief Net processing
on hardware systems that can handle hundreds of boards, if
not more, of customized logic with near linear performance
increase. We elucidate tradeoffs between flexibility in the neu-
ron connections, and the hardware resources, such as memory
and communication bandwidth, required to build a custom
processor design that has optimal efficiency. We illustrate how
our architecture can easily support sparse networks with dense
regions of connections between neighboring sets of neurons,
which is relevant to applications where there are obvious spatial
correlations in the data, such as in image processing. We
demonstrate the feasibility of our approach by implementing a
multi-FPGA system. We show that a speedup of 46X-112X over
an optimized single core CPU implementation can be achieved
for a four-FPGA implementation.

Keywords-Accelerators; Neural network hardware; Com-
puter architecture; Large-scale systems; Field programmable
gate arrays; Parallel processing; Boltzmann machines;

I. INTRODUCTION

A Deep Belief Network (DBN) is a multilayer generative
model that is trained to extract the essential features of
the input data by maximizing the likelihood of its training
data. DBNs have recently gained great popularity in the
machine learning community due to their potential in solving
previously difficult learning problems. Introduced in 2006 by
Hinton et al. [1], DBNs use Restricted Boltzmann Machines
(RBMs) to efficiently train each layer of a deep network.
DBNs have been successfully demonstrated in various appli-
cations, such as handwritten digit recognition [1] and human
motion modeling [2].

Although DBNs appear to be a promising tool, investi-
gations are limited by the significant amount of processing
that RBMs require; current state-of-the-art implementations,
including those for multi-core CPUs and GPUs, have long
running times even for relatively small nets [3]. The pri-
mary issue is that conventional processors do not efficiently
exploit the fine grain parallelism present in RBM training
algorithms, which are dominated by large matrix multipli-
cations. Graphics processors have significant performance

benefits over CPUs in matrix operations, but do not scale to
very large networks due to I/O bandwidth limitations, which
we discuss in Section IV.

We seek to address this problem in both the short and
long term by developing a scalable, highly optimized custom
computer architecture for DBN processing. In the near
term, systems implementing this architecture in field pro-
grammable gate arrays may be able to achieve considerable
speedups over conventional CPUs. Longer term, we believe
that future generations of many-core processors may contain
cores that are optimized for specific classes of applications.
An architectural exploration in this area using our ideas
could lead to future processors that are better suited to DBN
processing.

We show the trade-offs of the network configuration and
hardware resources, such as memory and IO bandwidth,
using which it will be possible to build a custom DBN
network that is best suited for a particular application. To
validate our claims in this paper, we implemented a multi-
FPGA RBM system that can process 256 neurons per FPGA.

II. RELATED WORK

There has been considerable interest in accelerating the
training of neural networks using customized hardware.
In 1992, Cox and Blanz [4] demonstrated an FPGA im-
plementation of a layered neural network for performing
classification tasks. In 1994, Lysaght et al. [S] showed
that dynamic reconfiguration of FPGAs could be used to
train larger layered networks. Zhu and Sutton [6] provide a
survey of FPGA implementations of neural networks, trained
using backpropagation. Graf et al. [7] introduced a single
FPGA design optimized for support vector machine training
and convolutional neural network processing. Using systolic
array for neural networks have also been explored to exploit
the parallelism in neural networks [8].

Since the introduction in 2006 of Hinton et al’s fast
learning algorithm [1] for DBNs (Deep Belief Nets), there
has been renewed interest in neural networks. Ly and Chow
[9] introduced an FPGA architecture for training DBNs. Our
previous work [10] improved the single FPGA architecture
by generalizing the data representation and adding runtime
flexibility of major learning parameters. Ly and Chow ex-
tended their work to multiple FPGAs [11]. However, their

hidden neurons

visible neurons

Figure 1. Illustration of an RBM network.

architecture will be challenging to scale to large networks
due to their communication resource requirements.

III. SCALABLE RESTRICTED BOLTZMANN MACHINE
ARCHITECTURE

The Restricted Boltzmann Machine is the key component
of DBN processing, where the vast majority of the computa-
tion takes place. As shown in ref. [10], matrix multiplication
is responsible for more than 99% of the execution time
for large networks. In this section, we briefly explain the
RBM training algorithm and describe how previous single
FPGA implementations accelerated the algorithm. Then we
explore how we can extend the single FPGA implementation
to a very large scale architecture for DBN processing. We
investigate the trade-offs in designing a large scale DBN
processing system, which involves the network structure and
the hardware resources. Finally, we demonstrate how this
architecture can be used to support sparse networks in a
limited way, since exploiting the sparsity can significantly
decrease the amount of computation and communication
required.

A. RBM training algorithm summary

Here we briefly summarize the algorithm by Hinton et al.
[1] for training RBMs, which we seek to accelerate.

RBMs are probabilistic generative models that are able
to automatically extract features of their input data using a
completely unsupervised learning algorithm. RBMs consist
of a layer of hidden and a layer of visible neurons with
connection strengths between hidden and visible neurons
represented by an array of weights (see Figure 1). To train
an RBM, samples from a training set are used as input to
the RBM through the visible neurons, and then the network
alternatively samples back and forth between the visible and
hidden neurons. The goal of training is to learn visible-
hidden connection weights and neuron activation biases such
that the RBM learns to reconstruct the input data during the
phase where it samples the visible neurons from the hidden
neurons.

Figure 2 shows the pseudo-code for the RBM training
algorithm. Each sampling process is essentially matrix-
matrix multiply between a batch of training examples and
the weight matrix, followed by a neuron activation function,
which in many cases is a sigmoid function (1/ (1 + e~%)).

-Visible neurons initially set to a batch of training examples, denoted vis_batch_0
-Repeat until convergence {
1) Sample hid_batch_0 from P(h|vis_batch_0)
a) tmp_matrix_1 = vis_batch_0 * weights
b) tmp_matrix_2 = tmp_matrix_I + hid_biases
¢) tmp_matrix_3 = sigmoid(tmp_matrix_2)
d) hid_batch_0= tmp_matrix_3 > rand()
2) Sample vis_batch_1 from P(v|hid_batch_0)
3) Sample hid_batch_1I from P(h|vis_batch_1I)
4) Update parameters:
a) weights += a(vis_batch_0"hid_batch_0 - vis_batch_1"*hid_batch_1I)
b) vis_biases += a(vis_batch_0"*1 —vis_batch_17*1)
¢) hid_biases += o(hid_batch_0"*1 - hid_batch_1"*1)
}

Figure 2. RBM training algorithm pseudo-code.

The sampling between the hidden and visible layers is fol-
lowed by a slight modification in the parameters (controlled
by the learning rate «) and repeated for each data batch in
the training set, and for as many epochs as is necessary to
reach convergence.

B. Previous single FPGA implementation overview

The RBM algorithm computation time is dominated by
matrix-matrix multiplication of batches of neuron values by
a weight matrix W. In addition, a significant amount of
time may also be spent in the matrix-matrix multiplication
of the visible neuron batches V' and hidden neuron batches
H in the weight update phase. To fully exploit the abundant
parallelism in matrix multiply operations, a hardware RBM
implementation should maximize the number of multipliers
that can be supported by the memory bandwidth and logic
gate resources, while reserving resources for other compu-
tation such as adders or the sigmoid function.

Previous work on accelerating the RBM algorithm using
custom hardware includes single FPGA implementations
[9][10]. Both approaches utilize the large embedded memory
of recent FPGAs to fit the weight matrix on-chip. The main
challenge in designing a single FPGA RBM accelerator is
deciding how to perform the matrix transpose. The train-
ing algorithm requires three matrix-matrix products: VW,
HW?T, and VT H. Suppose we have M multipliers. To fully
utilize the M multiplier resources, M weights must be read
from the memory blocks each cycle.

We have previously demonstrated [10] a scalable approach
that involves changing the ordering of the matrix multiply
operations for different computation phases such that only
row vectors of the weight matrix need to be accessed. The
cost for this is the use of twice as many adders. The matrix
multiplication HW7 can be performed as a collection of
vector inner products, where the row vectors of the weight
matrix W are accessed each cycle. To obtain the product
VW, WTVT is computed instead, which then is viewed as
a collection of vectors, each of which is a linear combination
of the column vectors of W7, with V7T as the coefficents.
Thus, only columns of WT (rows of W) need to be read

from memory, which are all multiplied by an element of a
row vector from V each cycle.

Another benefit of this approach is that the matrix product
VTH in the weight update phase can reuse the structure
for multiplication VW. Notice the memory bandwidth re-
quirement for visible neurons is one neuron per cycle to be
broadcasted, while the bandwidth requirement for a hidden
neuron computation is a row vector of the hidden neuron
batch H. If we view VT H as the sum of the outer products
of each row vector of V' and H, we can broadcast the visible
node each cycle, which is multiplied by a row of hidden
neurons to get the outer product. We can then sum the outer
products using the existing accumulator. Since the matrix
multiply structure for weight updates is basically the same
as the hidden neuron computation phase, we mainly focus
on the two multiplications VW and HW T for the remainder
of this paper.

C. Extension to multiple chip architecture

Ly and Chow [11] recently proposed an extension from
the single FPGA architecture to a multi-FPGA system,
where a partitioning algorithm is used to distribute the work
amongst multiple FPGAs while minimizing the communica-
tion. However, the inter-chip network requires communica-
tion resources that increase quadratically with the number of
neurons, which makes it difficult to scale to large networks.
Therefore, instead of focusing on minimizing the amount
of communication, we localize the communication to allow
scalability.

The modular approach in our previous work [10] divides
the work into multiple groups, localizing most operations
such as matrix multiplication, the sigmoid function, and
weight updates. Localization enables the user to easily
migrate the same design to a future technology and take
advantage of the technology by adding more modules. The
few operations that do require global communication are
appropriately buffered to avoid long wiring.

Although our modular approach is scalable within a chip,
we cannot directly extend it to multiple-chip systems. The
main issue is in how to deal with the global communication
across the chips, which includes visible neuron broadcast in
the hidden neuron computation phase and tree add reduction
for the visible reconstruction phase.

Figure 3 illustrates our multi-FPGA system architecture
for a network of three FPGAs. Our novel design builds on
top of our previous single FPGA architecture. We see no
inherent obstacles to extending our design to tens or hun-
dreds of FPGAs (although of course there will be practical
challenges that arise when constructing such large systems).

Our key insight is that it is possible to distribute the
computation across multiple FPGAs and only require two
nearest-neighbour communication links between FPGAs,
including a connection from the first FPGA to the last FPGA.

FPGA 2

e YW, h

aj’’j

2 W ih;

Figure 3. A high-level view of our architecture illustrating the inter-chip
communications of a system with three FPGAs. Communications for both
the visible and hidden neuron update phases are shown.

Let’s first consider the hidden node computation phase.
In the single FPGA implementation, visible neurons are
broadcasted during the computation of the hidden neurons.
However, broadcasting to multiple FPGAs would severely
limit the scalability of our system. Thus, broadcasting the
neurons is only done within the FPGA (with the appropri-
ate buffering). Instead of broadcasting to all FPGAs, each
FPGA passes the visible neurons it has read or received
to its neighbor in one direction. To avoid any initial idle
cycles waiting for data, the FPGA first reads from the
local memory its portion of visible data and multiplies it
with the appropriate weights, illustrated as the bold lines in
Figure 4(a). Meantime each FPGA passes the visible data it
had processed and consumes new incoming visible data as
shown in Figure 4(b) until all the visible data has completely
traversed the ring.

Reconstruction of the visible neurons on multiple FPGAs
is done in a similar manner. Visible neuron computation
requires a global add reduction. If we were to implement
the global add reduction across multiple FPGAs with a
similar method used in the single FPGA implementation,
then either the connections between the FPGAs would need
to be almost all-to-all, or the global reduction would have
to be performed and transferred at a slow rate from shared
wire contention, limiting the overall performance. Instead
of performing the global add reduction all at once, we
have each FPGA calculate the partial reduction for its final
destination FPGA and pass this result to the neighboring
FPGA. Figure 4(c) and Figure 4(d) illustrates how the partial
reductions are passed to neighboring FPGAs. In Figure 4(c),
each FPGA starts by computing the partial reduction for the
furthest FPGA and passes its result to its neighbor. Then
each FPGA in Figure 4(d) computes the partial sum for the
next furthest FPGA and adds it to the incoming partial sum.
This continues until the partial sums add up to be complete
at the final destination FPGA, where the visible node is
reconstructed.

(a) (c)

(b) (d)

Figure 4. Simplified version of the communication between FPGAs

Since the hidden neuron computation requires one visible
neuron broadcast per cycle, the I/O bandwidth requirement
between the FPGAs is determined by the fact that each
FPGA need only send one visible neuron to a neighbor per
cycle, or less if there are more neurons than the number
of multipliers per FPGA. The partial sums from visible
data reconstruction also only require one partial sum per
cycle, which in our system is 24 bits wide. Communications
are only in one direction during a particular phase of
the computation, although the direction of communication
changes periodically (hence a physical interconnect that can
only support a single direction is not sufficient, but a full
duplex link is not necessary).

The abovementioned proposal does not consider the com-
munication latency. However, off-chip communication does
have a certain amount of latency. To tolerate this latency,
each FPGA must process its local data first while data is
buffered in its input queue. Since the communication is
always nearest-neighbor, the latency only has to be less than
the batch size to keep the RBM pipeline full.

The design of the parallel computation that only requires a
ring topology for connecting FPGAs has several advantages.
Modern FPGAs have significant off-chip IO bandwidth by
providing many pins that can be clocked at high frequencies.
However, the number of pins is limited, so a ring topology,
as opposed to one with a higher number of connections
from each chip, is one of the few that allows the logical
connections to be implemented directly as physical connec-
tions. This enables both higher bandwidth, and is cheaper
— solutions involving high-bandwidth switches (such as
10GbE) can be prohibitively costly.

D. Memory bandwidth vs 10 bandwidth trade-off

A major issue that was not addressed in Section III-C
is that the weight matrix is assumed to fit on-chip. For a
single FPGA implementation, that assumption is reasonable
as modern FPGAs provide significant amounts of on-chip
memory. However, the weight matrix grows as O(IN?) where
N is the number of neurons. As we increase the number of
FPGAs, the number of multipliers increases proportionally,
thus the number of neurons that can be computed per cycle
also grows linearly. However, the embedded memory also
only increases linearly, while the weight matrix increases
quadratically.

To overcome this issue and scale to large systems, the
weight matrix must be streamed in from off-chip memory.
Suppose we have 256 multipliers in a chip. To fully utilize
the multipliers, we need to stream in 256 weights per
cycle. Assuming a 200MHz RBM with 16-bit precision
weights, the required bandwidth is around 100GB/sec, which
is beyond the limits of current FPGAs.

One way to alleviate the memory bandwidth problem is to
exploit the additional parallelism in the matrix multiplication
by processing multiple visible training examples at once.
This allows each weight to be fed into several multipliers
rather than just one. Figure 5 compares the case of pro-
cessing one training example per cycle versus two training
examples per cycle. The two training examples case reduces
the number of weights needed per cycle while still utilizing
all the multipliers. The trade-off is that two visible neurons
instead of one need to be read from the local memory. Given
a fixed on-chip memory size, it becomes a trade-off between
the number of neurons to be processed each cycle in the

| v(D: first training example

Wi 0
—t—> viD w
3R)

v,

1
v wy)

ACC

Wi v, Wy (1)
[.. W W] —|3 17102 Lanpy Winey
20v2) Wiz] E®

(a) K=1 Vi (b) K=2
] 1@ sefp L
31 21 1| —-—> ACC
w
...W32W22W12 __%(X) ViW, ADD / ViWp
ACC

—% ViWiz Sl ADD/ ViWis
T3 |
[W Wa W] 5@ atsfn] | vt
o WaN WoN WiIN —4— ACC

ACC

v, | v® : second training example

! 2
ADD/ v, wy,

ACC

AN v wy
coo W31 Wz] Wll —H@
w (2)
o 2(N/2 I(N2) —e—> ACC

Figure 5.

FPGA versus a larger batch size. However, as long as the
number of neurons per FPGA does not fall below the number
of multipliers, the speedup should remain approximately the
same regardless of the number of neurons, since the speedup
comes from the abundant multiplier resources.

Let us return to the previous example where 100GB/sec
bandwidth was required. The bandwidth requirement can be
significantly reduced to 6.25GB/sec by using a batch size
K = 16. This bandwidth is achievable by using a DDR2
400MHz SDRAM which can supply 128 bits at 400MHz,
i.e. 6400MB/sec.

By exploiting the parallelism in multiple training ex-
amples, we can dramatically decreases the DRAM band-
width requirement. However, it may also increase the IO
bandwidth requirements. Recall that each chip sends to its
neighbor a visible neuron each cycle. However, since the
RBM is processing multiple visible training examples at
once, the 10 bandwidth requirement linearly increases with
the batch size. The same applies for partial sums in the
visible computation phase. Thus, the total memory and IO
bandwidth cost for M multipliers per FPGA is

M/K + K (1)

where the unit of the cost is 16 bits of data per cycle. To
minimize the total bandwidth requirement, we simply set
M/K = K, which leads to a batch size of K = /M.
Table I illustrates the memory and IO bandwidth trade-off
as K is changed. The number of multipliers were selected to
be 256 and 1024 to reflect the latest FPGAs on the market.
As can be seen in the table, only the memory bandwidth
requirement depends on the number of multipliers. The 10
bandwidth remains constant while we change the number
of multipliers. However, the memory and IO bandwidth
requirements both increase linearly with the clock frequency.
Therefore, for a given communication capacity, it is gen-

Computation of processing (a) one input vector and (b) two input vectors per cycle

Table I
TRADE-OFF OF K, MEMORY BANDWIDTH, AND IO BANDWIDTH AT
75MHz AND 100MHZ

clock K Mem 10 clock K Mem 10
(MHz) (Gbps) (Gbps) (MHz) (Gbps) (Gbps)
of multipliers = 256
75 4 76.8 14.4 100 4 102.4 19.2
75 8 38.4 28.8 100 8 51.2 38.4
75 16 19.2 57.6 100 16 25.6 76.8
of multipliers = 1024
75 4 307.2 14.4 100 4 409.6 19.2
75 8 153.6 28.8 100 8 204.8 38.4
75 16 76.8 57.6 100 16 102.4 76.8

erally more efficient to use FPGAs with more multipliers
and reduce the clock frequency than attempting to gain
performance by increasing the clock frequency.

In conclusion, increasing the batch size helps reduce the
memory bandwidth requirement. However, it is limited by
the on-chip memory space, and it also increases the IO
bandwidth requirement. The right balance for each system
depends on the specific values of chip-to-chip and memory
bandwidth.

E. Locally dense sparse network

Although RBMs have all-to-all connections between the
visible and hidden layers, it is unlikely that all the con-
nections will be actively used. The training of RBMs for
several applications where locality is important results in
sparse representation of the weight matrix. We can exploit
the sparseness of the weight matrix to increase the efficiency
of computation.

One simple way to make use of the sparseness is to limit
the fanout of each neuron to a constant number C'. In addi-
tion, for simplicity, we restrict connections of each neuron

Figure 6. Locally dense sparse network (a) implementation (b) conceptual figure cycle

to be the C' nearest neighboring neurons. Then the dense
matrix, if any, will occur only at the neighboring nodes.
This is overrestictive in the sense that the algorithm does not
necessarily converge to such locally dense representation in
general. However, we believe that such setting fits well in
applications where locality plays an important role such as
in image recognition [12], etc.

This restricted sparse configuration also maps well to our
architecture. If we set C' to be a multiple of the number of
neurons per chip, we only need to configure the number
of chips the data is being passed down before stopping
the computation phase. Figure 6 illustrates this approach.
The boxes in Figure 6(a) represent the chip border and
the circles are the neurons. The left and right ends of
the network are wrapped around such that all nodes have
constant fanout. Figure 6(b) is an equivalent diagram of the
network in Figure 6(a) leaving out the chip borders. As
shown in Figure 6(a), the two layers are not completely
connected to each other, but have a constant fanout of
C =2 x 3 = 6. Although the network shown in Figure 6 is
not itself “sparse”, conceptually it explains how a locally
dense sparse network will operate when many chips are
connected to the system. By adding this one control, we
can easily implement the locally dense sparse network.

Another reason the locally dense sparse network is at-
tractive is that all-to-all dense RBMs are costly to scale due
to the O (N?) memory requirement for storing the weight
matrix. For a locally dense sparse network, the weight matrix
can be considerably smaller, since the weight matrix grows
as O(N) with the number of neurons due to constant
fanout. This allows us to build a very large scale network,
approaching the scale of a human brain.

IV. EXPERIMENTAL RESULTS

To demonstrate the validity of our architecture, we con-
ducted experiments on four FPGA boards connected to each
other to form a ring network. The following subsections
describe the experiment details and discuss the results.

A. Experimental platform and implementation details

We implemented the multi-FPGA system using a de-
velopment board (Terasic DE3) that has an Altera Stratix
IIT FPGA and a DDR2 SDRAM SODIMM interface. The

Stratix IIT EP3SL340 has 135,000 ALMs (Adaptive Logic
Modules; ALMs can be viewed as two 6-input ALUTs com-
bined), 288 18x18 embedded multipliers, and 16,272 kbits
of embedded RAM. The RBM module in each FPGA runs at
150MHz and uses all the available multipliers. Our current
implementation does not support streaming weights from
DRAM, thus we instead utilize the internal memory in each
FPGA as was the case in the single FPGA implementation.
Since the bandwidth of the embedded memory is extremely
large, we adjust the K value to be 1 so that only one visible
neuron is sent per cycle. In our development board, we used
four LVDS pairs, resulting in a total datarate 4.8 Gbps per
direction, to transmit one 24-bit partial-sum or one 16-bit
neuron value every cycle for an RBM module running at
150MHz. However, based on the on-chip memory capacity
and available hardware resources, only up to four FPGAs
may be connected in a ring structure to support the weight
matrix. In addition, the on-chip memory on all four FPGAs
can store up to a total of 1M elements, which only allows
a 256x256 configuration for each FPGA, so the flexibility
to adjust the number of neurons as described in [10] is lost.
To overcome these issues, future work involves developing
the weight streaming logic of RBM modules to better utilize
the FPGAs’ fast DRAM and IO interfaces.

The four FPGAs are programmed with the Altera’s soft
processor (Nios II), a DDR2 memory controller, and an
RBM module. Nios II receives input from the user, reads
data from the SD card to store in DRAM, controls the overall
flow of the RBM module, and displays the internal state
of the RBM module. Future work may include adding a
1G Ethernet interface to stream in visible data in case the
training set is too large to be stored in DRAM.

B. Evaluation

To evaluate our implementation, we used the FPGA
boards to train on the MNIST handwritten digits dataset.

To verify that the results are indeed correct, we modified
a reference MATLAB implementation from Hinton et al.
[1] to a 16-bit fixed point version so that we may compare
the output of the algorithm given the same input. The
implementation was considered correct only when both
the hardware and software implementations gave the same
hidden variables, weights, and biases given the same input.

Table II
PERFORMANCE OF SINGLE CORE CPU, GPU, AND MULTI-FPGA

(a) Network size
Batch size K=100 768x768 | 1024x1024 | 1024x1024(s)
CPU runtime (s) 3578.52 5424.8 433291
Gmult/s 247 2.90 1.82
runtime (s) 152.91 236.13 185.10
GPU speedup 23.40 22.98 23.41
Gmult/s 57.85 66.61 42.49
runtime (s) 76.97 102.58 51.36
FPGAs | speedup 46.49 52.88 84.37
Gmult/s 114.95 153.33 153.13
(b) Network size
Batch size K=16 768x768 | 1024x1024 | 1024x1024(s)
CPU runtime (s) 4582.09 7863.75 5755.13
Gmult/s 1.93 2.00 1.37
runtime (s) 309.87 569.11 522.46
GPU speedup 14.79 13.82 11.02
Gmult/s 28.55 27.64 15.05
runtime (s) 76.97 102.58 51.36
FPGAs | speedup 59.53 76.67 112.07
Gmult/s 114.95 153.33 153.13

Performance was compared against a 2.3GHz Intel Xeon
E5345 processor and a NVIDIA GeForce GTX 275 GPU,
which has 240 CUDA processor cores running at 1.4GHz.
The RBM module, written in C++, used the GotoBLAS2[13]
library and the NVIDIA CUBLAS library for optimized
matrix operations. However, these BLAS libraries support
only floating point numbers, so we used the single precision
BLAS routines for a fair comparison.

Using the four FPGA boards available to us, we tested
our multi-FPGA prototype system with the following com-
binations of networks: dense 768x768, dense 1024x1024,
and “sparse” 1024x1024 with connections between two
neighboring boards. Although these are not large networks,
they are sufficient to demonstrate our architecture in practice.

The experiments were conducted on a fixed number of
50 epochs, and on two batch sizes, 16 and 100. For the
multi-FPGA implementation, a batch size of 100 was not
tested since the on-chip memory cannot hold both large
batches and the weight matrix at the same time. The sparse
RBM was done in CPU and GPU by only computing
the required operations. Table II shows the results of the
768x768, 1024x1024 dense network and of the 1024x1024
locally dense sparse network.

Runtime was measured to compare the speedup of the
GPU and multi-FPGA systems against a single CPU core.
The average number of multiplications per second (mult/s)
was used as a universally comparable performance metric
that does not depend on the problem size; this is similar
to the commonly used metric CUPS (connection update per
second), but mult/s provides an independent measure that
does not depend on the batch size.

Table IIT
SCALABILITY: SPEEDUP AGAINST ONE NODE OF EACH PLATFORM

Platform Number of Nodes
2 3 4
CPU (768x768) 1.59 | 1.80 | 2.14
GPU (1536x1536) 1.64 | 0.61 0.62
FPGA 2.01 | 3.02 | 4.03

As seen in Table II(b), the CPU and GPU perform poorly
with a batch size of 16. This is because small batch sizes
tend to perform less well in the SIMD and graphics oper-
ations since matrix-vector multiplication does not provide
enough parallelism. A batch size of 16 is sufficiently small
that this lack of available parallelism becomes apparent in
the results. However, the multi-FPGA implementation does
not exhibit this problem since the overhead to initiate a
matrix multiplication is very small and always uses all the
multipliers to achieve maximum performance.

This is a practical advantage for the multi-FPGA archi-
tecture since smaller batches may require fewer epochs to
converge, so small batch sizes may be favored in practice by
end users. Our experiments show that the error level at epoch
50 for batch size 100 can be achieved with only 36 epochs
for batch size 16. Thus, if we were to run the algorithm
until a certain error rate is reached, then the speedup for the
multi-FPGA implementation is even higher.

It is important to notice that the networks we are exper-
imenting with are not large scale. Since graphics processor
tend to perform better with larger matrices, the speedup may
differ when scaled to larger networks. Therefore, Table II
is only a reference to show how our design’s performance
scales with problem size. In fact, if we increase the network
size to 3072x3072, then the graphics processor shows around
52.7X speedup compared to the Intel Xeon processor. A
comprehensive large scale comparison is the subject of
future work.

Table III illustrates how CPUs, GPUs, and our FPGA
architecture scales with the number of nodes. Four CPU
machines, using one core per node, and two GPU machines,
with two NVIDIA GTX 275 cards each, were fully con-
nected via a Gigabit Ethernet switch to perform the scala-
bility test. OpenMPI was used for communication, and the
data was carefully distributed to minimize communication.
Network sizes for CPUs and GPUs were chosen such that
the matrices were not too small to be inefficient, but not
too large to cause overwhelming communication overhead.
Our FPGAs, on the other hand, currently have a fixed
configuration of 256 neurons per node, so the network size
varies with the number of boards (768x768 for 3 FPGAs,
1024x1024 for 4 FPGAs). The speedups in Table III were
calculated using the measured Gmult/s performance of each
platform.

As shown in Table III, the CPU shows sublinear scala-
bility as we increase the number of nodes. The GPU also
showed a sublinear speedup for 2 nodes, but revealed a major
performance loss when crossing machine boundaries as the
number of nodes increases from two to three. FPGAs, on the
other hand, showed good scalability up to four nodes, and are
expected to scale well to a very large number. The energy-
efficient nature of FPGAs, in addition to the scalability of
our design, makes our approach desirable for large-scale
DBN implementations.

V. FUTURE WORK

Our current prototype places limits on the size of the
network due to the limited capacity of the on-chip memory.
Future work will include a design that streams weights from
DRAM, which also allows flexible network configuration
as in our previous work [10]. In addition, our next step
to significantly expand the size of networks that can be
trained in practice is to implement our architecture with
the latest FPGAs which have more multiplier resources and
communication capacity. Due to the simplicity of our com-
munication scheme, many existing reconfigurable computing
platforms may be appropriate — a ring topology is simple
to implement with almost any platform that provides point-
to-point communication links.

VI. CONCLUSION

Research in large scale Deep Belief Nets has been difficult
due to the computation intensive and memory intensive
nature of the application. However, building on our previous
single FPGA implementation, we were able to design an
architecture that scales to a very large number of FPGA
chips. In addition, we extend the potential scalability even
further by exploiting the sparseness of particular applica-
tions. A four-FPGA implementation has been demonstrated
to show the feasibility of our approach, and showed a 46X-
112X speedup with linear scalability. We expect our scalable
architecture (which requires communication resources that
grow only linearly with the network size) can be used to
tackle very large machine learning applications that may
have previously been difficult to approach. This is in contrast
to previous architectures, such as that in ref. [11], and naive
parallelizations, whose required communication resources
scale with the square of the network size, and hence are
infeasible to implement for large networks.

ACKNOWLEDGMENTS

The authors would like to thank Lawrence McAfee for
his assistance in obtaining DBN performance results on
GPUs, and Jacob Leverich for his help with the CPU cluster
infrastructure. SK gratefully acknowledges funding support
from the Kwanjeong Educational Foundation. PLM grate-
fully acknowledges the financial support of a David Cheriton
Stanford Graduate Fellowship. This work is supported by the
Stanford Computer Science Department.

REFERENCES

[1] G. Hinton, S. Osindero, and Y. Teh, “A fast learning algorithm
for deep belief nets.” Neural Computation, vol. 18, pp. 1527—
1554, 2006.

[2] G. W. Taylor, G. E. Hinton, and S. T. Roweis, “Modeling
Human Motion Using Binary Latent Variables,” in Advances
in Neural Information Processing Systems 19. MIT Press,
2007, pp. 1345-1352.

[3] R. Raina, A. Madhavan, and A. Ng, “Large-Scale Deep Unsu-
pervised Learning using Graphics Processors,” in Proceedings
of the 26th International Conference on Machine Learning,
L. Bottou and M. Littman, Eds. Montreal: Omnipress, June
2009, pp. 873-880.

[4] C. Cox and W. Blanz, “GANGLION-a fast field-
programmable gate array implementation of a connectionist
classifier,” Solid-State Circuits, IEEE Journal of, vol. 27,
no. 3, pp. 288-299, Mar 1992.

[5] P. Lysaght, J. Stockwood, J. Law, and D. Girma, “Artificial
neural network implementation on a fine-grained FPGA,”
Field-Programmable Logic Architectures, Synthesis and Ap-
plications, vol. 849, pp. 421-431, 1994.

[6] J. Zhu and P. Sutton, “FPGA Implementations of Neural
Networks: a Survey of a Decade of Progress,” in Proc. 13th
International Conference on Field-Programmable Logic and
Applications, Sep. 2003, pp. 1062-1066.

[7] H. P. Graf, S. Cadambi, I. Durdanovic, V. Jakkula,
M. Sankaradass, E. Cosatto, and S. Chakradhar, “A Massively
Parallel Digital Learning Processor,” in Advances in Neural
Information Processing Systems 21, D. Koller, D. Schuur-
mans, Y. Bengio, and L. Bottou, Eds., 2009, pp. 529-536.

[8] D. Zhang and S. K. Pal, Eds., Neural Networks and Systolic
Array Design. Farrer Road, Singapore: World Scientific
Publishing Co. Pte. Ltd., 2002.

[9] D. Ly and P. Chow, “A high-performance FPGA archi-
tecture for restricted boltzmann machines,” in Proc. of
the ACM/SIGDA International Symposium on Field Pro-
grammable Gate Arrays, Feb. 2009, pp. 73-82.

[10] S. K. Kim, L. C. McAfee, P. L. McMahon, and K. Olukotun,
“A Highly Scalable Restricted Boltzmann Machine Imple-
mentation,” in Field Programmable Logic and Applications,
2009. FPL 2009. International Conference on, Sept. 2009.

[11] D. L. Ly and P. Chow, “A Multi-FPGA Architecture for
Stochastic Restricted Boltzmann Machine,” in Field Pro-
grammable Logic and Applications, 2009. FPL 2009. Inter-
national Conference on, Sept. 2009.

[12] H. Lee, R. Grosse, R. Ranganath, and A. Ng, “Convolutional
Deep Belief Networks for Scalable Unsupervised Learning
of Hierarchical Representations,” in Proceedings of the 26th
International Conference on Machine Learning, L. Bottou
and M. Littman, Eds. Montreal: Omnipress, June 2009, pp.
609-616.

[13] K. Goto and R. Van De Geijn, “High-performance imple-
mentation of the level-3 BLAS,” ACM Trans. Math. Softw.,
vol. 35, no. 1, pp. 1-14, 2008.

