

OptiML: An Implicitly Parallel Domain-Specific Language for ML

Arvind K. Sujeeth, HyoukJoong Lee, Kevin J. Brown, Hassan Chafi, Michael Wu, Anand Atreya, Kunle Olukotun Stanford University Pervasive Parallelism Laboratory (PPL)

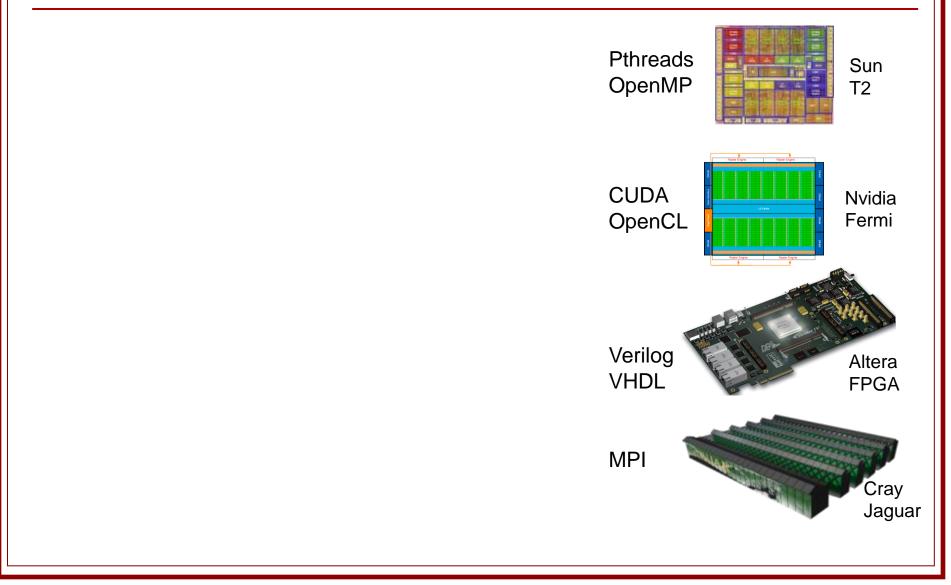
Tiark Rompf, Martin Odersky

Ecole Polytechnique Federale de Lausanne (EPFL), Programming Methods Laboratory

Background

- We are researchers in programming languages, parallel programming, and computer architecture
- Working with machine learning and bioinformatics groups at Stanford and elsewhere
- Would love to work with you and get your feedback, suggestions, and criticism

Heterogeneous Parallel Programming



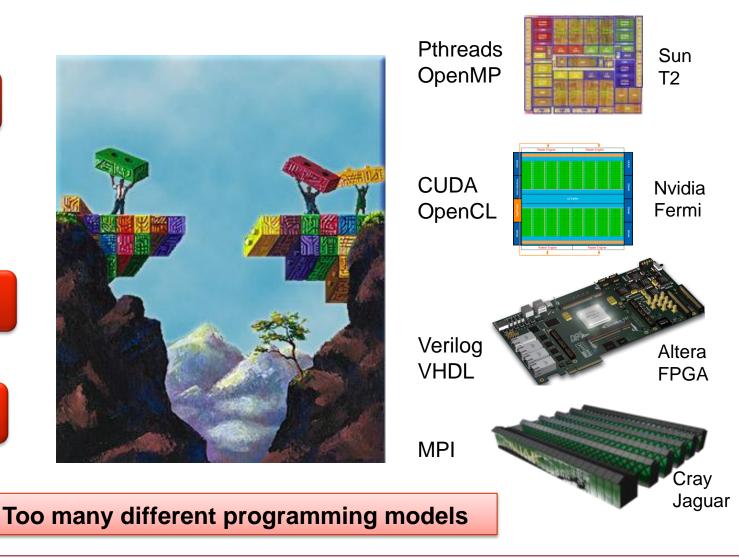
Programmability Chasm

Applications

Virtual **Worlds**

Personal **Robotics**

Data informatics



IS IT POSSIBLE TO WRITE ONE PROGRAM

AND

RUN IT ON ALL THESE TARGETS?

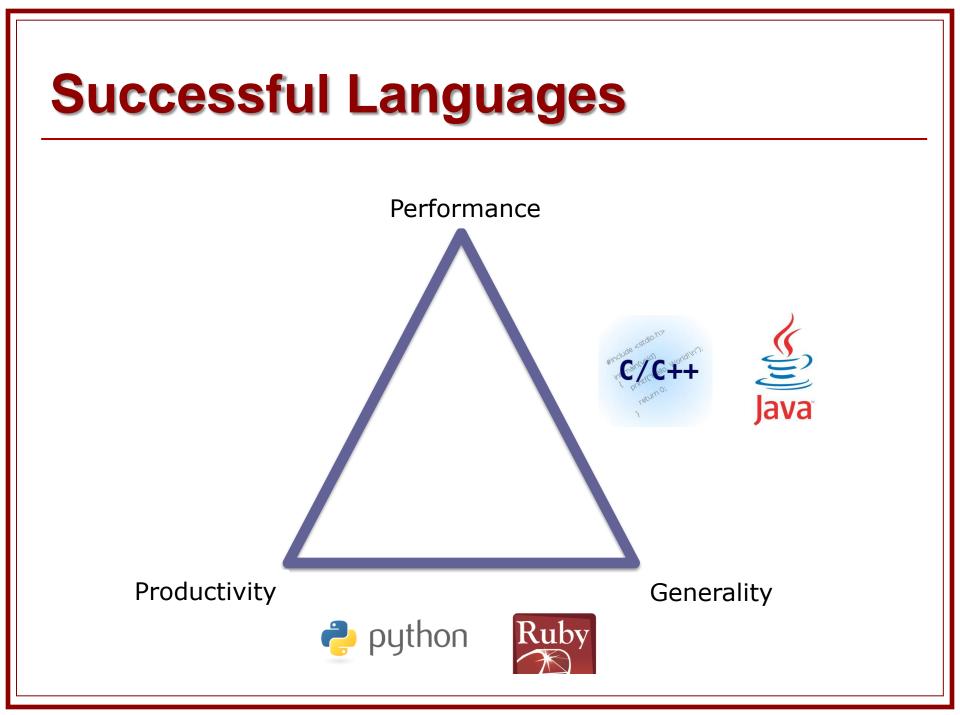
HYPOTHESIS: YES, BUT NEED

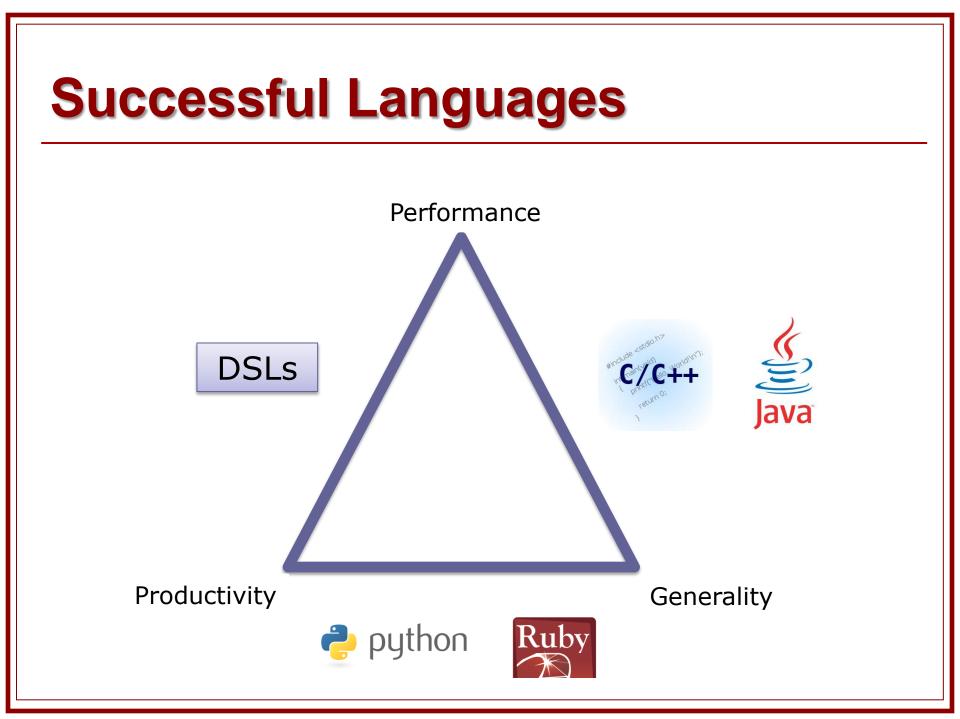
DOMAIN-SPECIFIC LANGUAGES

The Ideal Parallel Programming Language

Productivity

Generality





OptiML: A DSL For ML

Productive

- Operate at a higher level of abstraction
- Focus on algorithmic description, get parallel performance

Portable

- Single source => Multiple heterogeneous targets
- Not possible with today's MATLAB support

High Performance

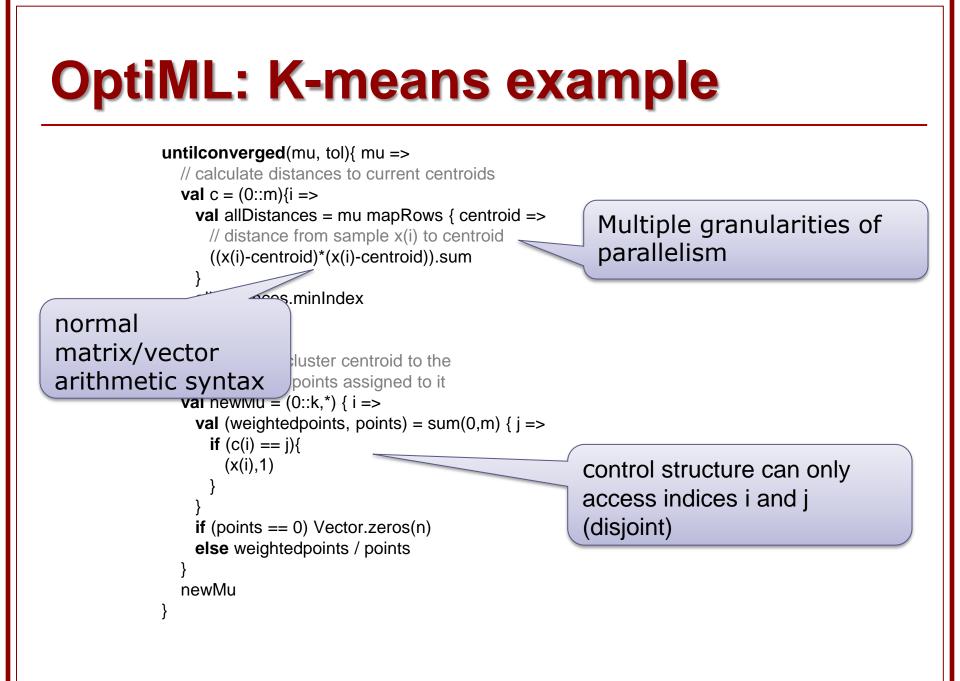
- Builds and optimizes an intermediate representation (IR) of programs
- Generates efficient code specialized to each target

OptiML: Overview

- Provides a familiar (MATLAB-like) language and API for writing ML applications
 - Ex. val c = a * b (a, b are Matrix[Double])

Implicitly parallel data structures

- General data types: Vector[T], Matrix[T], Graph[V,E]
 - Independent from the underlying implementation
- Specialized data types: Stream, TrainingSet, TestSet, IndexVector, Image, Video ..
 - Encode semantic information & structured, synchronized communication
- Implicitly parallel control structures
 - sum{...}, (0::end) {...}, gradient { ... }, untilconverged { ... }
 - Allow anonymous functions with restricted semantics to be passed as arguments of the control structures



OptiML vs. MATLAB

OptiML

- Statically typed
- No explicit parallelization
- Automatic GPU data management via runtime support
- Inherits Scala features and tool-chain
- Machine learning specific abstractions

MATLAB

- Dynamically typed
- Applications must explicitly choose between vectorization or parallelization
- Explicit GPU data management
- Widely used, numerous libraries and toolboxes

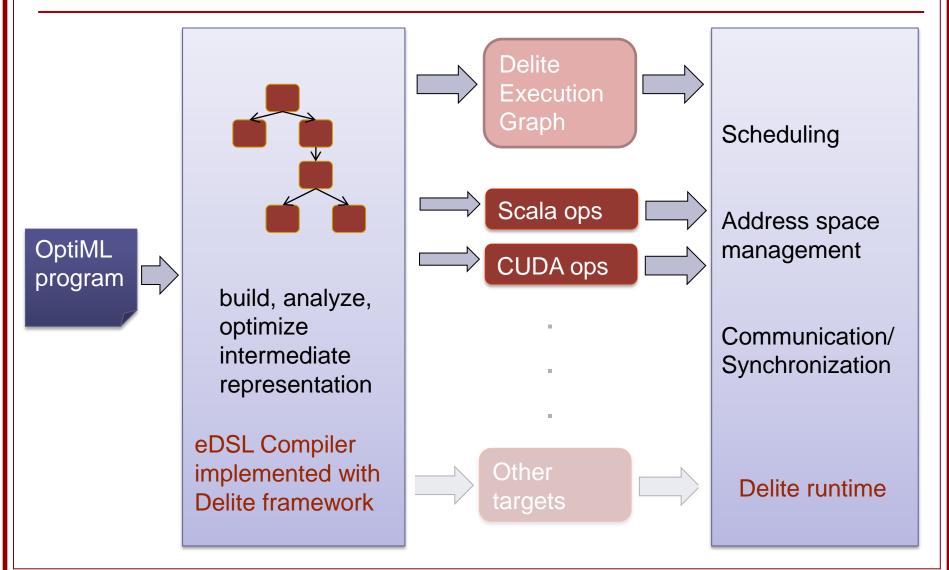
MATLAB parallelism

parfor` is nice, but not always best

- MATLAB uses heavy-weight MPI processes under the hood
- Precludes vectorization, a common practice for best performance
- GPU code requires different constructs
- The application developer must choose an implementation, and these details are all over the code

```
ind = sort(randsample(1:size(data,2),length(min_dist)));
data_tmp = data(:,ind);
all_dist = zeros(length(ind),size(data,2));
parfor i=1:size(data,2)
    all_dist(:,i) = sum(abs(repmat(data(:,i),1,size(data_tmp,2)) -
data_tmp),1)';
end
all_dist(all_dist==0)=max(max(all_dist));
```

OptiML Implementation



Optimizations

 Common subexpression elimination (CSE), Dead code elimination (DCE), Code motion

Pattern rewritings

- Linear algebra simplifications
- Shortcuts to help fusing

Op fusing

can be especially useful in ML due to fine-grained operations and low arithmetic intensity

Coarse-grained: optimizations happen on vectors and matrices

OptiML Linear Algebra Rewrite Example

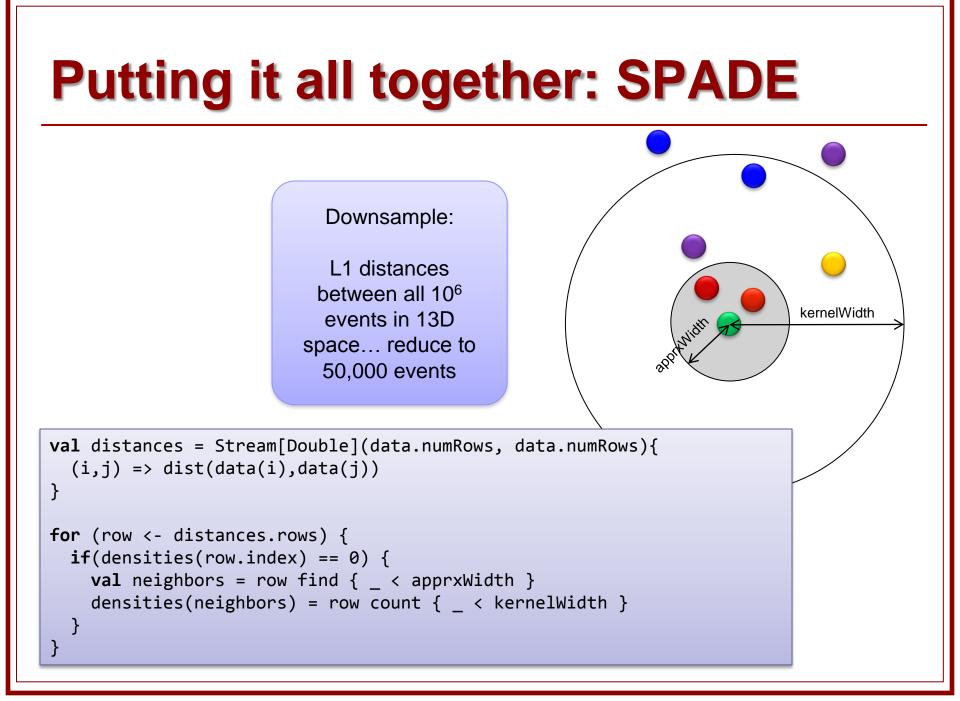
 A straightforward translation of the Gaussian Discriminant Analysis (GDA) algorithm from the mathematical description produces the following code:

val sigma = sum(0,m) { i =>
 if (x.labels(i) == false) {
 ((x(i) - mu0).t) ** (x(i) - mu0)
 else
 ((x(i) - mu1).t) ** (x(i) - mu1)
 }
}

A much more efficient implementation recognizes that

$$\sum_{i=0}^{n} \overrightarrow{x_{i}} * \overrightarrow{y_{i}} \to \sum_{i=0}^{n} X(:,i) * Y(i,:) = X * Y$$

 Transformed code was 20.4x faster with 1 thread and 48.3x faster with 8 threads.



SPADE transformations

```
val distances = Stream[Double](data.numRows, data.numRows){
  (i,j) => dist(data(i),data(j))
for (row <- distances.rows) {</pre>
  row.init // expensive! part of the stream foreach operation
  if(densities(row.index) == 0) {
    val neighbors = row find { _ < apprxWidth }</pre>
    densities(neighbors) = row count { _ < kernelWidth }</pre>
                              row is 235,000 elements
                              in one typical dataset –
                              fusing is a big win!
```

SPADE generated code

```
// FOR EACH ELEMENT IN ROW
while (x155 < x61) {
    val x168 = x155 * x64
    var x180 = 0</pre>
```

```
// INITIALIZE STREAM VALUE (dist(i,j))
while (x180 < x64) {
    val x248 = x164 + x180
    // ...
}</pre>
```

// VECTOR FIND
if (x245) x201.insert(x201.length, x155)

```
// VECTOR COUNT
if (x246) {
    val x207 = x208 + 1
    x208 = x207
}
x155 += 1
```

From a ~5 line algorithm description in OptiML

...to an efficient, fused, imperative version that closely resembles a handoptimized C++ baseline!

Performance Results

Machine

Two quad-core Nehalem 2.67 GHz processors

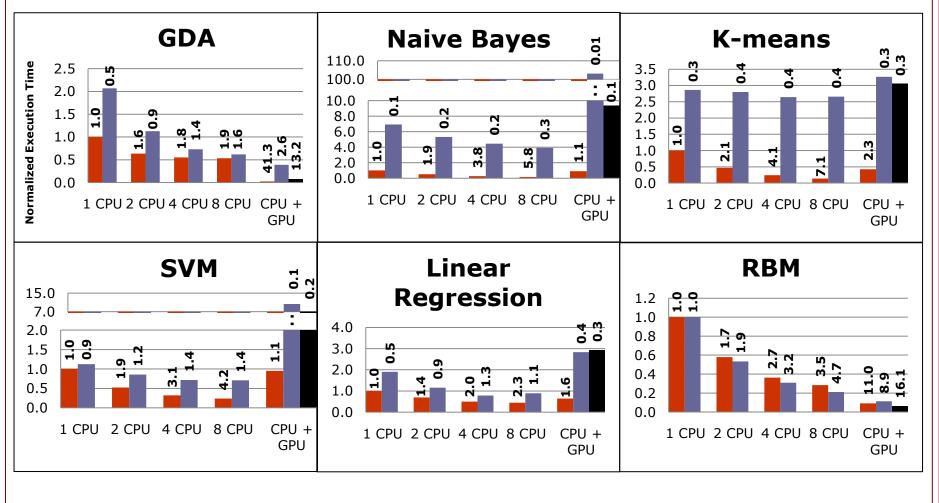
NVidia Tesla C2050 GPU

Application Versions

- OptiML + Delite
- MATLAB
 - version 1: multi-core (parallelization using "parfor" construct and BLAS)
 - version 2: MATLAB GPU support
 - version 3: Accelereyes Jacket GPU support
- C++
 - Optimized reference baselines for larger applications

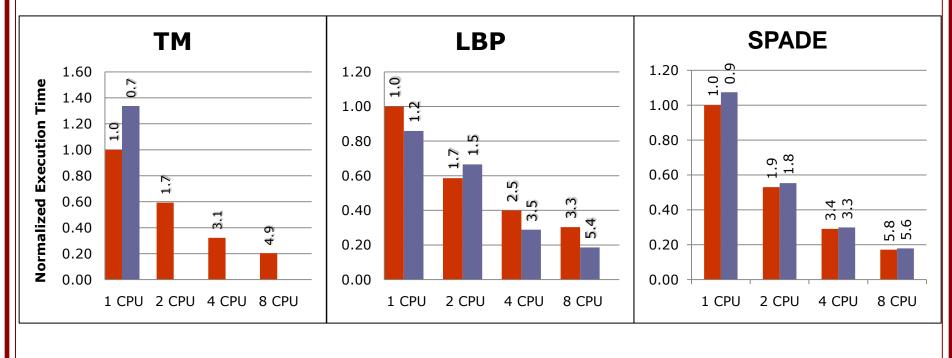
Experiments on ML kernels

■ OptiML ■ Parallelized MATLAB ■ MATLAB + Jacket

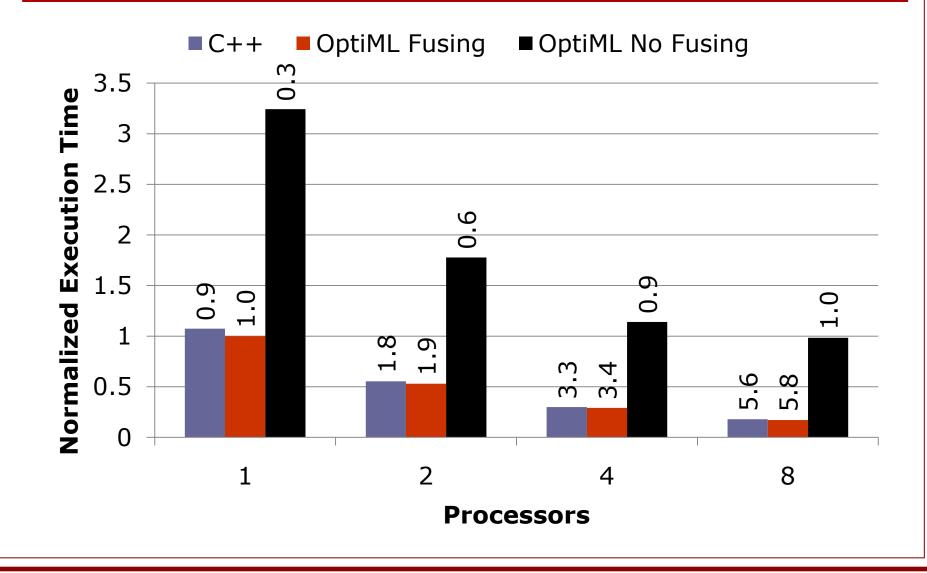


Experiments on larger apps

■ OptiML ■ C++



Impact of Op Fusion



Summary

- DSLs are a promising parallel programming platform
 - Capable of achieving portability, productivity, and high performance
- OptiML is a proof-of-concept DSL for ML embedded in Scala, using the Lightweight Modular Staging (LMS) framework and Delite
- OptiML translates simple, declarative machine learning operations to optimized code for multiple platforms
- Outperforms MATLAB and C++ on a set of wellknown machine learning applications

Thank you!

- For the brave, find us on Github:
 - https://github.com/stanford-ppl/Delite
 - (very alpha)
- Comments and criticism very welcome
- Questions?

backup

OptiML: Approach

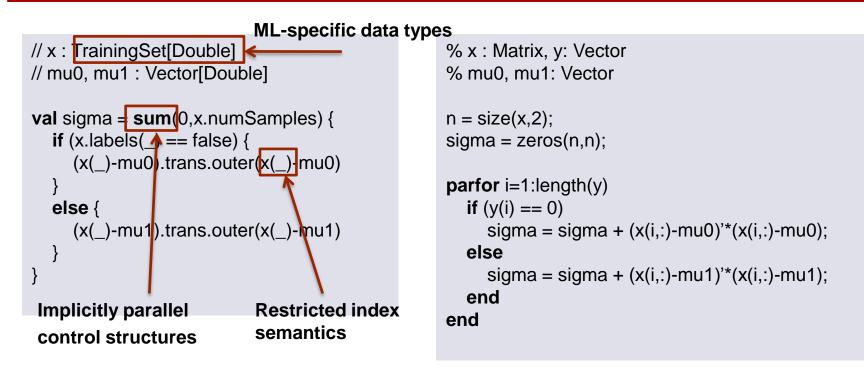
M

- Encourage a functional, parallelizable style through restricted semantics
 - Fine-grained, composable map-reduce operators

OptiML does not have to be conservative

- (d Guarantees major properties (e.g. parallelizable) by construction
- Automatically synchronize parallel iteration over domain-specific data structures
 - Exploit structured communication patterns (nodes in a graph may only access neighbors, etc.)
- Defer as many implementation-specific details to compiler and runtime as possible

Example OptiML / MATLAB code (Gaussian Discriminant Analysis)

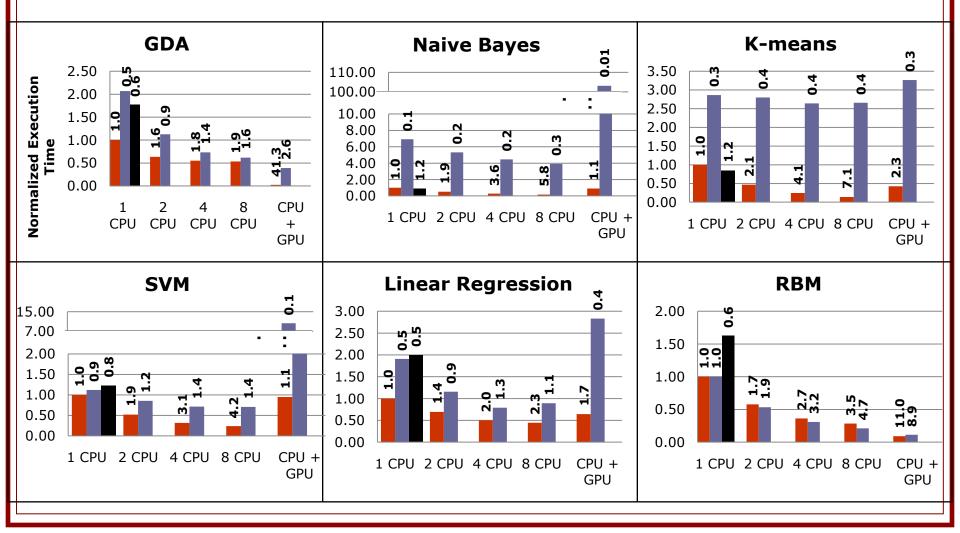


OptiML code

(parallel) MATLAB code

Experiments on ML kernels (C++)

■ OptiML ■ Parallelized MATLAB ■ C++



Dynamic Optimizations

Relaxed dependencies

- Iterative algorithms with inter-loop dependencies prohibit task parallelism
- Dependencies can be relaxed at the cost of a marginal loss in accuracy
- Relaxation percentage is run-time configurable

Best effort computations

- Some computations can be dropped and still generate acceptable results
- Provide data structures with "best effort" semantics, along with policies that can be chosen by DSL users

Dynamic optimizations

K-means Best Effort

SVM Relaxed Dependencies

