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Background

ÂWe are researchers in programming 
languages, parallel programming, and 
computer architecture

ÂWorking with machine learning and 
bioinformatics groups at Stanford and 
elsewhere

ÂWould love to work with you and get 
your feedback, suggestions, and 
criticism
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Performance

Productivity Generality

The Ideal Parallel Programming 
Language



Successful Languages

Performance

Productivity Generality



Successful Languages

Performance

Productivity Generality

DSLs



OptiML: A DSL For ML

Â Productive
Â Operate at a higher level of abstraction

Â Focus on algorithmic description, get parallel 
performance

Â Portable
Â Single source => Multiple heterogeneous targets

Â Not possible with todayôs MATLAB support

Â High Performance
Â Builds and optimizes an intermediate 

representation (IR) of programs

Â Generates efficient code specialized to each target 



OptiML: Overview

Â Provides a familiar (MATLAB - like) language and 
API for writing ML applications
Â Ex. val c = a * b (a, b are Matrix[Double]) 

Â Implicitly parallel data structures
Â General data types: Vector[T], Matrix[T], Graph[V,E]

Â Independent from the underlying implementation

Â Specialized data types: Stream, TrainingSet , TestSet , 
IndexVector , Image, Video ..

Â Encode semantic information & structured, synchronized 
communication

Â Implicitly parallel c ontrol structures
Â sum{é}, (0::end) {é}, gradient { é },  untilconverged { é }

Â Allow anonymous functions with restricted semantics to be 
passed as arguments of the control structures



OptiML: K-means example
untilconverged(mu, tol){ mu =>

// calculate distances to current centroids

val c = (0::m){i =>

val allDistances = mu mapRows { centroid =>

// distance from sample x(i) to centroid

((x(i)-centroid)*(x(i)-centroid)).sum

}

allDistances.minIndex

}

// move each cluster centroid to the

// mean of the points assigned to it

val newMu = (0::k,*) { i =>

val (weightedpoints, points) = sum(0,m) { j =>

if (c(i) == j){

(x(i),1)

}

}

if (points == 0) Vector.zeros(n)

else weightedpoints / points

}

newMu

}

control structure can only 

access indices i and j 

(disjoint)

Multiple granularities of 
parallelism

normal 
matrix/vector 
arithmetic syntax



OptiML vs. MATLAB

Â OptiML

Â Statically typed

Â No explicit 
parallelization

Â Automatic GPU data 
management via run -
time support

Â Inherits Scala features 
and tool -chain

Â Machine learning 
specific abstractions

Â MATLAB

Â Dynamically typed

Â Applications must 
explicitly choose 
between vectorization
or parallelization

Â Explicit GPU data 
management

Â Widely used, 
numerous libraries and 
toolboxes



MATLAB parallelism

Â ` parfor ` is nice, but not always best

Â MATLAB uses heavy -weight MPI processes under the hood

Â Precludes vectorization , a common practice for best 
performance

Â GPU code requires different constructs

Â The application developer must choose an implementation, 
and these details are all over the code

ind = sort(randsample(1:size(data,2),length(min_dist)));

data_tmp = data(:,ind);

all_dist = zeros(length(ind),size(data,2));

parfor i=1:size(data,2)

all_dist(:,i) = sum(abs(repmat(data(:,i),1,size(data_tmp,2)) -

data_tmp),1)';

end

all_dist(all_dist==0)=max(max(all_dist));
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Optimizations

Â Common subexpression elimination (CSE), 
Dead code elimination (DCE), Code motion

Â Pattern rewritings
Â Linear algebra simplifications
Â Shortcuts to help fusing

Â Op fusing
Â can be especially useful in ML due to fine -grained 

operations and low arithmetic intensity

Coarse -grained: optimizations happen on 
vectors and matrices



OptiML Linear Algebra 
Rewrite Example

Â A straightforward translation of the Gaussian Discriminant 
Analysis (GDA) algorithm from the mathematical 
description produces the following code:

Â A much more efficient implementation recognizes that

Â Transformed code was 20.4x faster with 1 thread and 
48.3x faster with 8 threads.   

val sigma = sum (0,m) { i =>
if (x.labels (i) == false) {

(( x(i ) - mu0).t ) ** (x(i ) - mu0 )
else

(( x(i ) - mu1).t ) ** (x(i ) - mu1 )
}

}


