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Background

m We are researchers in programming
languages, parallel programming, and
computer architecture

= Working with machine learning and
bioinformatics groups at Stanford and
elsewhere

= Would love to work with you and get
your feedback, suggestions, and
criticism
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Programmability Chasm

Applications

Scientific
Engineering
Virtual
Worlds
Personal
Robotics
Data
informatics

Verilog
VHDL

MPI

Too many different programming models
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IS IT POSSIBLE TO WRITE
ONE PROGRAM

AND
RUN IT ON ALL THESE TARGETS?




HYPOTHESIS: YES, BUT NEED

DOMAIN-SPECIFIC LANGUAGES




The Ideal Parallel Programming
Language

Performance

Productivity Generality
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OptiML: A DSL For ML

= Productive
= Operate at a higher level of abstraction

= Focus on algorithmic description, get parallel
performance

m Portable
= Single source => Multiple heterogeneous targets
= Not possible with today’s MATLAB support

= High Performance

= Builds and optimizes an intermediate
representation (IR) of programs

= Generates efficient code specialized to each target




OptiML: Overview

m Provides a familiar (MATLAB-like) language and
API for writing ML applications

= Ex.valc=a* b (a, bare Matrix[Double])

m Implicitly parallel data structures
= General data types: Vector[T], Matrix[T], Graph[V,E]
« Independent from the underlying implementation

= Specialized data types: Stream, TrainingSet, TestSet,
IndexVector, Image, Video ..

=« Encode semantic information & structured, synchronized
communication

= Implicitly parallel control structures

= sum{...}, (0::end) {...}, gradient { ... }, untilconverged { ... }

= Allow anonymous functions with restricted semantics to be
passed as arguments of the control structures




OptiML: K-means example

untilconverged(mu, tol){ mu =>
/I calculate distances to current centroids
val ¢ = (0:m){i =>

val allDistances = mu mapRows { centroid => . ‘y s
/Il distance from sample x(i) to centroid MUItlple granularltles of

((x(i)-centroid)*(x(i)-centroid)).sum parallelism

}

.minlndex
normal

matrix/vector luster centroid to the

arithmetic syntax Jpoints assigned to it
varnewwvu = (0:k,*) {i=>
val (weightedpoints, points) = sum(0,m) {j =>

if (c(i) == i) o
(x(),1) control structure can only

) } access indices i and |

if (points == 0) Vector.zeros(n) (disjoint)

else weightedpoints / points

}

newMu

}




OptiML vs. MATLAB

= OptiML = MATLAB

= Statically typed = Dynamically typed

= No explicit = Applications must
parallelization explicitly choose
Automatic GPU data between vectorization

management via run- or parallelization
time support Explicit GPU data

Inherits Scala features management
and tool-chain Widely used,
Machine learning numerous libraries and

specific abstractions toolboxes




MATLAB parallelism

s parfor is nice, but not always best
= MATLAB uses heavy-weight MPI processes under the hood

= Precludes vectorization, a common practice for best
performance

= GPU code requires different constructs

m The application developer must choose an implementation,
and these details are all over the code

ind = sort(randsample(1:size(data,2),length(min_dist)));
data_tmp = data(:,ind);
all_dist = zeros(length(ind),size(data,?2));
parfor i=1:size(data,2)
all_dist(:,i) = sum(abs(repmat(data(:,i),1,size(data_tmp,2)) -
data_tmp),1);
end
all_dist(all_dist==0)=max(max(all_dist));




OptiML Implementation

— —

Scheduling

[ :> Address space
> CUDA ops :> management

Communication/
Synchronization

build, analyze,
optimize
intermediate
representation

eDSL Compiler
implemented with

Delite framework Delite runtime




Optimizations

m Common subexpression elimination (CSE),
Dead code elimination (DCE), Code motion

m Pattern rewritings

= Linear algebra simplifications
= Shortcuts to help fusing

= Op fusing

= can be especially useful in ML due to fine-grained
operations and low arithmetic intensity

Coarse-grained: optimizations happen on
vectors and matrices




OptiML Linear Algebra
Rewrite Example

= A straightforward translation of the Gaussian Discriminant
Analysis (GDA) algorithm from the mathematical
description produces the following code:

val sigma = sum(O,m) { i =>
if (x.labels(i) == false) {
((x(i) - mu0).t) ** (x(i) - mu0)
else
((x(i) - mul).t) ** (x(i) - mul)
b
b

= A much more efficient implementation recognizes that

n
i—»ZX(:,i)W(i,:):X*Y
i=0

m Transformed code was 20.4x faster with 1 thread and
48.3x faster with 8 threads.




Putting it all together: SPADE

Downsample:

L1 distances
between all 106
events in 13D

kernelWidth

space... reduce to
50,000 events

val distances = Stream[Double](data.numRows, data.numRows){
(i,j) => dist(data(i),data(j))
}

for (row <- distances.rows) {
if(densities(row.index) == 0) {
val neighbors = row find { _ < apprxWidth }
densities(neighbors) = row count { _ < kernelWidth }

}

}

7|




SPADE transformations

val distances = Stream[Double](data.numRows, data.numRows){
(i,j) => dist(data(i),data(j))

for (row <- distances.rows) {
row.init // expensive! part of the stream foreach operation
if(densities(row.index) == 0) {
val neighbors = row find { _ < apprxWidth }

densities(neighpors) = row count { _ < KernelWidth }

row is 235,000 elements
In one typical dataset —
fusing is a big win!




SPADE generated code

// FOR EACH ELEMENT IN ROW

while (x155 < x61) { From a ~5 line
val x168 = x155 * x64 algorithm

var x180 = 0 .. .
description in

// INITIALIZE STREAM VALUE (dist(i,j)) .
while (x180 < x64) { OptiML
val x248 = x164 + x180

/] ...

ks
// VECTOR FIND ...to an efficient,

if (x245) x201.insert(x201.length, x155) fused imperative

// VECTOR COUNT version that closely
if (x246) {

val x207 = x208 + 1 resembles a hand-

e optimized C++

X155 += 1 baseline!




Performance Results

m Machine

= TwWo quad-core Nehalem 2.67 GHz processors
= NVidia Tesla C2050 GPU

= Application Versions
= OptiML + Delite

= MATLAB

=« version 1: multi-core (parallelization using
“parfor” construct and BLAS)

= version 2: MATLAB GPU support
= version 3: Accelereyes Jacket GPU support
s C++

=« Optimized reference baselines for larger
applications




Experiments on ML kernels

m OptiML m Parallelized MATLAB mMATLAB + Jacket
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Experiments on larger apps

mOptiML ®C++
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Impact of Op Fusion

mC++ mQOptiML Fusing mOptiML No Fusing
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Summary

m DSLs are a promising parallel programming
platform

= Capable of achieving portability, productivity, and high
performance

m OptiML is a proof-of-concept DSL for ML
embedded in Scala, using the Lightweight
Modular Staging (LMS) framework and Delite

m OptiML translates simple, declarative machine
learning operations to optimized code for
multiple platforms

m Outperforms MATLAB and C++ on a set of well-
known machine learning applications




Thank you!

m For the brave, find us on Github:
m https://qgithub.com/stanford-ppl/Delite
= (very alpha)

m Comments and criticism very
welcome

m Questions?



https://github.com/stanford-ppl/Delite
https://github.com/stanford-ppl/Delite
https://github.com/stanford-ppl/Delite

backup




OptiML: Approach

m Encourage a functional, parallelizable style
through restricted semantics

= Fine-grained, composable map-reduce operators
OptiML does not have to be conservative

m M
(d Guarantees major properties (e.g.
parallelizable) by construction

m Automatically synchronize parallel iteration
over domain-specific data structures

= Exploit structured communication patterns (nodes
in @ graph may only access neighbors, etc.)

m Defer as many implementation-specific
details to compiler and runtime as possible




Examp

le OptiML / MATLAB code

(Gaussian Discriminant Analysis)

IIx: II'rainingSet[DoubIe] ——

// muO, mul : Vector[Double]

val sigma =

sum(0,x.numSamples) {

if (x.labe

s( 4 == false) {

(X(L)-muO, .trans.outer muO)

}

else{

(X(L)-mulj).trans.outer(x(_)-ful)

}
}

Implicitly parallel Restricted index
control structures semantics

OptiML code

ML-specific data types

% X : Matrix, y: Vector
% muO, mul: Vector

n = size(x,2);
sigma = zeros(n,n);

parfor i=1:length(y)
if (y(i) == 0)
sigma = sigma + (X(i,:)-mu0)*(x(i,:)-mu0);
else
sigma = sigma + (x(i,:)-mu1)™*(x(i,:)-mul);
end
end

(parallel) MATLAB code




Experiments on ML kernels (C++)
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Dynamic Optimizations

m Relaxed dependencies

= Iterative algorithms with inter-loop dependencies
prohibit task parallelism

= Dependencies can be relaxed at the cost of a marginal
loss in accuracy

= Relaxation percentage is run-time configurable

m Best effort computations

= Some computations can be dropped and still generate
acceptable results

= Provide data structures with “best effort” semantics,
along with policies that can be chosen by DSL users




Dynamic optimizations

K-means Best Effort SVM Relaxed Dependencies

Normalized Execution Time
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