
OptiML: An Implicitly Parallel

Domain-Specific Language for ML

Arvind K. Sujeeth, HyoukJoong Lee, Kevin J. Brown,
Hassan Chafi, Michael Wu, Anand Atreya, Kunle Olukotun

Stanford University
Pervasive Parallelism Laboratory (PPL)

Tiark Rompf, Martin Odersky
Ecole Polytechnique Federale de Lausanne (EPFL),

Programming Methods Laboratory

Background

 We are researchers in programming
languages, parallel programming, and
computer architecture

 Working with machine learning and
bioinformatics groups at Stanford and
elsewhere

 Would love to work with you and get
your feedback, suggestions, and
criticism

Heterogeneous Parallel
Programming

Cray

Jaguar

Sun

T2

Nvidia

Fermi

Altera

FPGA

MPI

Pthreads

OpenMP

CUDA

OpenCL

Verilog

VHDL

Programmability Chasm

Too many different programming models

Cray

Jaguar

Sun

T2

Nvidia

Fermi

Altera

FPGA

MPI

Pthreads

OpenMP

CUDA

OpenCL

Verilog

VHDL

Virtual

Worlds

Personal

Robotics

Data

informatics

Scientific

Engineering

Applications

Performance

Productivity Generality

The Ideal Parallel Programming
Language

Successful Languages

Performance

Productivity Generality

Successful Languages

Performance

Productivity Generality

DSLs

OptiML: A DSL For ML

 Productive
 Operate at a higher level of abstraction

 Focus on algorithmic description, get parallel
performance

 Portable
 Single source => Multiple heterogeneous targets

 Not possible with today’s MATLAB support

 High Performance
 Builds and optimizes an intermediate

representation (IR) of programs

 Generates efficient code specialized to each target

OptiML: Overview

 Provides a familiar (MATLAB-like) language and
API for writing ML applications
 Ex. val c = a * b (a, b are Matrix[Double])

 Implicitly parallel data structures
 General data types: Vector[T], Matrix[T], Graph[V,E]

 Independent from the underlying implementation

 Specialized data types: Stream, TrainingSet, TestSet,
IndexVector, Image, Video ..

 Encode semantic information & structured, synchronized
communication

 Implicitly parallel control structures
 sum{…}, (0::end) {…}, gradient { … }, untilconverged { … }

 Allow anonymous functions with restricted semantics to be
passed as arguments of the control structures

OptiML: K-means example
untilconverged(mu, tol){ mu =>

// calculate distances to current centroids

val c = (0::m){i =>

val allDistances = mu mapRows { centroid =>

// distance from sample x(i) to centroid

((x(i)-centroid)*(x(i)-centroid)).sum

}

allDistances.minIndex

}

// move each cluster centroid to the

// mean of the points assigned to it

val newMu = (0::k,*) { i =>

val (weightedpoints, points) = sum(0,m) { j =>

if (c(i) == j){

(x(i),1)

}

}

if (points == 0) Vector.zeros(n)

else weightedpoints / points

}

newMu

}

control structure can only

access indices i and j

(disjoint)

Multiple granularities of
parallelism

normal
matrix/vector
arithmetic syntax

OptiML vs. MATLAB

 OptiML

 Statically typed

 No explicit
parallelization

 Automatic GPU data
management via run-
time support

 Inherits Scala features
and tool-chain

 Machine learning
specific abstractions

 MATLAB

 Dynamically typed

 Applications must
explicitly choose
between vectorization
or parallelization

 Explicit GPU data
management

 Widely used,
numerous libraries and
toolboxes

MATLAB parallelism

 `parfor` is nice, but not always best

 MATLAB uses heavy-weight MPI processes under the hood

 Precludes vectorization, a common practice for best
performance

 GPU code requires different constructs

 The application developer must choose an implementation,
and these details are all over the code

ind = sort(randsample(1:size(data,2),length(min_dist)));

data_tmp = data(:,ind);

all_dist = zeros(length(ind),size(data,2));

parfor i=1:size(data,2)

all_dist(:,i) = sum(abs(repmat(data(:,i),1,size(data_tmp,2)) -

data_tmp),1)';

end

all_dist(all_dist==0)=max(max(all_dist));

OptiML Implementation

OptiML

program

eDSL Compiler

implemented with

Delite framework

build, analyze,

optimize

intermediate

representation

Scheduling

Address space

management

Communication/

Synchronization

Delite

Execution

Graph

Delite runtime

Scala ops

CUDA ops

.

.

.

Other

targets

Optimizations

 Common subexpression elimination (CSE),
Dead code elimination (DCE), Code motion

 Pattern rewritings
 Linear algebra simplifications
 Shortcuts to help fusing

 Op fusing
 can be especially useful in ML due to fine-grained

operations and low arithmetic intensity

Coarse-grained: optimizations happen on
vectors and matrices

OptiML Linear Algebra
Rewrite Example

 A straightforward translation of the Gaussian Discriminant
Analysis (GDA) algorithm from the mathematical
description produces the following code:

 A much more efficient implementation recognizes that

 Transformed code was 20.4x faster with 1 thread and
48.3x faster with 8 threads.

val sigma = sum(0,m) { i =>
if (x.labels(i) == false) {
((x(i) - mu0).t) ** (x(i) - mu0)

else
((x(i) - mu1).t) ** (x(i) - mu1)

}
}

Putting it all together: SPADE

kernelWidth

Downsample:

L1 distances

between all 106

events in 13D

space… reduce to

50,000 events

val distances = Stream[Double](data.numRows, data.numRows){
(i,j) => dist(data(i),data(j))

}

for (row <- distances.rows) {
if(densities(row.index) == 0) {

val neighbors = row find { _ < apprxWidth }
densities(neighbors) = row count { _ < kernelWidth }

}
}

val distances = Stream[Double](data.numRows, data.numRows){

(i,j) => dist(data(i),data(j))

}

for (row <- distances.rows) {

row.init // expensive! part of the stream foreach operation

if(densities(row.index) == 0) {

val neighbors = row find { _ < apprxWidth }

densities(neighbors) = row count { _ < kernelWidth }

}

}

SPADE transformations

row is 235,000 elements

in one typical dataset –

fusing is a big win!

SPADE generated code

// FOR EACH ELEMENT IN ROW

while (x155 < x61) {

val x168 = x155 * x64

var x180 = 0

// INITIALIZE STREAM VALUE (dist(i,j))

while (x180 < x64) {

val x248 = x164 + x180

// …

}

// VECTOR FIND

if (x245) x201.insert(x201.length, x155)

// VECTOR COUNT

if (x246) {

val x207 = x208 + 1

x208 = x207

}

x155 += 1

}

From a ~5 line

algorithm

description in

OptiML

…to an efficient,

fused, imperative

version that closely

resembles a hand-

optimized C++

baseline!

Performance Results

 Machine
 Two quad-core Nehalem 2.67 GHz processors
 NVidia Tesla C2050 GPU

 Application Versions
 OptiML + Delite
 MATLAB

 version 1: multi-core (parallelization using
“parfor” construct and BLAS)

 version 2: MATLAB GPU support
 version 3: Accelereyes Jacket GPU support

 C++
 Optimized reference baselines for larger

applications

Experiments on ML kernels
1

.0

1
.6

1
.8

1
.9

4
1

.3

0
.5

0
.9

1
.4

1
.6

2
.6

1
3

.2

0.0

0.5

1.0

1.5

2.0

2.5

1 CPU 2 CPU 4 CPU 8 CPU CPU +

GPUN
o

r
m

a
li

z
e
d

 E
x
e
c
u

ti
o

n
 T

im
e

GDA

1
.0

2
.1

4
.1

7
.1

2
.3

0
.3

0
.4

0
.4

0
.4

0
.3

0
.3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1 CPU 2 CPU 4 CPU 8 CPU CPU +

GPU

K-means

1
.0

1
.7

2
.7

3
.5

1
1

.0

1
.0

1
.9

3
.2

4
.7

8
.9

1
6

.1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 CPU 2 CPU 4 CPU 8 CPU CPU +

GPU

RBM

1
.0

1
.9

3
.8

5
.8 1
.1

0
.1

0
.2

0
.2

0
.3

0
.1

0.0
2.0
4.0
6.0
8.0

10.0

1 CPU 2 CPU 4 CPU 8 CPU CPU +

GPU

0
.0

1

100.0

110.0

Naive Bayes

..

1
.0

1
.4

2
.0

2
.3

1
.6

0
.5

0
.9

1
.3

1
.1

0
.4

0
.3

0.0

1.0

2.0

3.0

4.0

1 CPU 2 CPU 4 CPU 8 CPU CPU +

GPU

Linear
Regression

1
.0

1
.9

3
.1

4
.2

1
.10
.9

1
.2

1
.4

1
.4

0.0

0.5

1.0

1.5

2.0

1 CPU 2 CPU 4 CPU 8 CPU CPU +

GPU

0
.1

7.0

15.0

SVM

..

0
.2

OptiML Parallelized MATLAB MATLAB + Jacket

Experiments on larger apps
1
.0

1
.7

3
.1

4
.9

0
.7

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1 CPU 2 CPU 4 CPU 8 CPU

N
o

r
m

a
li
z
e
d

 E
x
e
c
u

ti
o
n

 T
im

e

TM

OptiML C++

1
.0

1
.9

3
.4

5
.8

0
.9

1
.8

3
.3

5
.6

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1 CPU 2 CPU 4 CPU 8 CPU

SPADE

1
.0

1
.7

2
.5

3
.3

1
.2

1
.5

3
.5

5
.4

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1 CPU 2 CPU 4 CPU 8 CPU

LBP

Impact of Op Fusion

0
.9

1
.8

3
.3

5
.6

1
.0

1
.9

3
.4

5
.8

0
.3

0
.6

0
.9

1
.0

0

0.5

1

1.5

2

2.5

3

3.5

1 2 4 8

N
o

r
m

a
li
z
e
d

 E
x
e
c
u

ti
o

n
 T

im
e

Processors

C++ OptiML Fusing OptiML No Fusing

Summary

 DSLs are a promising parallel programming
platform
 Capable of achieving portability, productivity, and high

performance

 OptiML is a proof-of-concept DSL for ML
embedded in Scala, using the Lightweight
Modular Staging (LMS) framework and Delite

 OptiML translates simple, declarative machine
learning operations to optimized code for
multiple platforms

 Outperforms MATLAB and C++ on a set of well-
known machine learning applications

Thank you!

 For the brave, find us on Github:

 https://github.com/stanford-ppl/Delite

 (very alpha)

 Comments and criticism very
welcome

 Questions?

https://github.com/stanford-ppl/Delite
https://github.com/stanford-ppl/Delite
https://github.com/stanford-ppl/Delite

backup

OptiML: Approach

 Encourage a functional, parallelizable style
through restricted semantics
 Fine-grained, composable map-reduce operators

 Map ML operations to parallel operations
(domain decomposition)

 Automatically synchronize parallel iteration
over domain-specific data structures
 Exploit structured communication patterns (nodes

in a graph may only access neighbors, etc.)

 Defer as many implementation-specific
details to compiler and runtime as possible

OptiML does not have to be conservative

Guarantees major properties (e.g.

parallelizable) by construction

% x : Matrix, y: Vector

% mu0, mu1: Vector

n = size(x,2);

sigma = zeros(n,n);

parfor i=1:length(y)

if (y(i) == 0)

sigma = sigma + (x(i,:)-mu0)’*(x(i,:)-mu0);

else

sigma = sigma + (x(i,:)-mu1)’*(x(i,:)-mu1);

end

end

Example OptiML / MATLAB code
(Gaussian Discriminant Analysis)

// x : TrainingSet[Double]

// mu0, mu1 : Vector[Double]

val sigma = sum(0,x.numSamples) {

if (x.labels(_) == false) {

(x(_)-mu0).trans.outer(x(_)-mu0)

}

else {

(x(_)-mu1).trans.outer(x(_)-mu1)

}

}

OptiML code (parallel) MATLAB code

ML-specific data types

Implicitly parallel

control structures

Restricted index

semantics

Experiments on ML kernels (C++)

OptiML Parallelized MATLAB C++

1
.0

1
.6

1
.8

1
.9

4
1

.3

0
.5

0
.9

1
.4

1
.6

2
.6

0
.6

0.00

0.50

1.00

1.50

2.00

2.50

1
CPU

2
CPU

4
CPU

8
CPU

CPU
+

GPUN
o

r
m

a
li
z
e
d

 E
x
e
c
u

ti
o
n

T
im

e

GDA

1
.0

1
.9

3
.6

5
.8 1
.1

0
.1

0
.2

0
.2

0
.3

1
.2

0.00

2.00

4.00

6.00

8.00

10.00

1 CPU 2 CPU 4 CPU 8 CPU CPU +

GPU

0
.0

1

100.00

110.00

Naive Bayes

...

1
.0

1
.7

2
.7

3
.5

1
1

.0

1
.0

1
.9

3
.2

4
.7

8
.9

0
.6

0.00

0.50

1.00

1.50

2.00

1 CPU 2 CPU 4 CPU 8 CPU CPU +

GPU

RBM

1
.0

2
.1

4
.1

7
.1 2

.3

0
.3

0
.4

0
.4

0
.4

0
.3

1
.2

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

1 CPU 2 CPU 4 CPU 8 CPU CPU +

GPU

K-means

1
.0

1
.9

3
.1

4
.2

1
.10
.9

1
.2

1
.4

1
.4

0
.8

0.00

0.50

1.00

1.50

2.00

1 CPU 2 CPU 4 CPU 8 CPU CPU +

GPU

0
.1

7.00

15.00

SVM

...

1
.0

1
.4

2
.0

2
.3 1

.7

0
.5

0
.9

1
.3 1
.1

0
.4

0
.5

0.00

0.50

1.00

1.50

2.00

2.50

3.00

1 CPU 2 CPU 4 CPU 8 CPU CPU +

GPU

Linear Regression

Dynamic Optimizations

 Relaxed dependencies
 Iterative algorithms with inter-loop dependencies

prohibit task parallelism

 Dependencies can be relaxed at the cost of a marginal
loss in accuracy

 Relaxation percentage is run-time configurable

 Best effort computations
 Some computations can be dropped and still generate

acceptable results

 Provide data structures with “best effort” semantics,
along with policies that can be chosen by DSL users

Dynamic optimizations

0

0.2

0.4

0.6

0.8

1

1.2

N
o

r
m

a
li
z
e
d

 E
x
e
c
u

ti
o

n
 T

im
e

K-means Best-effort (1.2% error)

Best-effort (4.2% error) Best-effort (7.4% error) SVM Relaxed SVM (+ 1% error)

K-means Best Effort SVM Relaxed Dependencies

