PR
) PRALELSH
LBRATR

OptiML: An Implicitly Parallel
Domain-Specific Language for ML

Arvind K. _Sur,'geth, HyoukJoong Lee, Kevin J. Brown
Hassan Chafi, Michael Wu, Anand Atreya, Kunle Olukotun

Stanford University
Pervasive Parallelism Laboratory (PPL)

Tiark Rompf, Martin Odersky
Ecole Polytechnique Federale de Lausanne (EPFL),
Programming Methods Laboratory

Background

m We are researchers in programming
languages, parallel programming, and
computer architecture

= Working with machine learning and
bioinformatics groups at Stanford and
elsewhere

= Would love to work with you and get
your feedback, suggestions, and
criticism

Heterogeneous Parallel
Programming

Verilog
VHDL

Nvidia
Fermi

Altera
FPGA

Cray
Jaguar

Programmability Chasm

Applications

Scientific
Engineering
Virtual
Worlds
Personal
Robotics
Data
informatics

Verilog
VHDL

MPI

Too many different programming models

Nvidia
Fermi

Altera
FPGA

Cray
Jaguar

IS IT POSSIBLE TO WRITE
ONE PROGRAM

AND
RUN IT ON ALL THESE TARGETS?

HYPOTHESIS: YES, BUT NEED

DOMAIN-SPECIFIC LANGUAGES

The Ideal Parallel Programming
Language

Performance

Productivity Generality

Successful Languages

Performance

Productivity

@ python m

Generality

Successful Languages

Performance

Productivity

@ python m

Generality

OptiML: A DSL For ML

= Productive
= Operate at a higher level of abstraction

= Focus on algorithmic description, get parallel
performance

m Portable
= Single source => Multiple heterogeneous targets
= Not possible with today’s MATLAB support

= High Performance

= Builds and optimizes an intermediate
representation (IR) of programs

= Generates efficient code specialized to each target

OptiML: Overview

m Provides a familiar (MATLAB-like) language and
API for writing ML applications

= Ex.valc=a* b (a, bare Matrix[Double])

m Implicitly parallel data structures
= General data types: Vector[T], Matrix[T], Graph[V,E]
« Independent from the underlying implementation

= Specialized data types: Stream, TrainingSet, TestSet,
IndexVector, Image, Video ..

=« Encode semantic information & structured, synchronized
communication

= Implicitly parallel control structures

= sum{...}, (0::end) {...}, gradient { ... }, untilconverged { ... }

= Allow anonymous functions with restricted semantics to be
passed as arguments of the control structures

OptiML: K-means example

untilconverged(mu, tol){ mu =>
/I calculate distances to current centroids
val ¢ = (0:m){i =>

val allDistances = mu mapRows { centroid => . ‘y s
/Il distance from sample x(i) to centroid MUItlple granularltles of

((x(i)-centroid)*(x(i)-centroid)).sum parallelism

}

.minlndex
normal

matrix/vector luster centroid to the

arithmetic syntax Jpoints assigned to it
varnewwvu = (0:k,*) {i=>
val (weightedpoints, points) = sum(0,m) {j =>

if (c(i) == i) o
(x(),1) control structure can only

) } access indices i and |

if (points == 0) Vector.zeros(n) (disjoint)

else weightedpoints / points

}

newMu

}

OptiML vs. MATLAB

= OptiML = MATLAB

= Statically typed = Dynamically typed

= No explicit = Applications must
parallelization explicitly choose
Automatic GPU data between vectorization

management via run- or parallelization
time support Explicit GPU data

Inherits Scala features management
and tool-chain Widely used,
Machine learning numerous libraries and

specific abstractions toolboxes

MATLAB parallelism

s parfor is nice, but not always best
= MATLAB uses heavy-weight MPI processes under the hood

= Precludes vectorization, a common practice for best
performance

= GPU code requires different constructs

m The application developer must choose an implementation,
and these details are all over the code

ind = sort(randsample(1:size(data,2),length(min_dist)));
data_tmp = data(:,ind);
all_dist = zeros(length(ind),size(data,?2));
parfor i=1:size(data,2)
all_dist(:,i) = sum(abs(repmat(data(:,i),1,size(data_tmp,2)) -
data_tmp),1);
end
all_dist(all_dist==0)=max(max(all_dist));

OptiML Implementation

— —

Scheduling

[:> Address space
> CUDA ops :> management

Communication/
Synchronization

build, analyze,
optimize
intermediate
representation

eDSL Compiler
implemented with

Delite framework Delite runtime

Optimizations

m Common subexpression elimination (CSE),
Dead code elimination (DCE), Code motion

m Pattern rewritings

= Linear algebra simplifications
= Shortcuts to help fusing

= Op fusing

= can be especially useful in ML due to fine-grained
operations and low arithmetic intensity

Coarse-grained: optimizations happen on
vectors and matrices

OptiML Linear Algebra
Rewrite Example

= A straightforward translation of the Gaussian Discriminant
Analysis (GDA) algorithm from the mathematical
description produces the following code:

val sigma = sum(O,m) { i =>
if (x.labels(i) == false) {
((x(i) - mu0).t) ** (x(i) - mu0)
else
((x(i) - mul).t) ** (x(i) - mul)
b
b

= A much more efficient implementation recognizes that

n
i—»ZX(:,i)W(i,:):X*Y
i=0

m Transformed code was 20.4x faster with 1 thread and
48.3x faster with 8 threads.

Putting it all together: SPADE

Downsample:

L1 distances
between all 106
events in 13D

kernelWidth

space... reduce to
50,000 events

val distances = Stream[Double](data.numRows, data.numRows){
(i,j) => dist(data(i),data(j))
}

for (row <- distances.rows) {
if(densities(row.index) == 0) {
val neighbors = row find { _ < apprxWidth }
densities(neighbors) = row count { _ < kernelWidth }

}

}

7|

SPADE transformations

val distances = Stream[Double](data.numRows, data.numRows){
(i,j) => dist(data(i),data(j))

for (row <- distances.rows) {
row.init // expensive! part of the stream foreach operation
if(densities(row.index) == 0) {
val neighbors = row find { _ < apprxWidth }

densities(neighpors) = row count { _ < KernelWidth }

row is 235,000 elements
In one typical dataset —
fusing is a big win!

SPADE generated code

// FOR EACH ELEMENT IN ROW

while (x155 < x61) { From a ~5 line
val x168 = x155 * x64 algorithm

var x180 = 0 .. .
description in

// INITIALIZE STREAM VALUE (dist(i,j)) .
while (x180 < x64) { OptiML
val x248 = x164 + x180

/] ...

ks
// VECTOR FIND ...to an efficient,

if (x245) x201.insert(x201.length, x155) fused imperative

// VECTOR COUNT version that closely
if (x246) {

val x207 = x208 + 1 resembles a hand-

e optimized C++

X155 += 1 baseline!

Performance Results

m Machine

= TwWo quad-core Nehalem 2.67 GHz processors
= NVidia Tesla C2050 GPU

= Application Versions
= OptiML + Delite

= MATLAB

=« version 1: multi-core (parallelization using
“parfor” construct and BLAS)

= version 2: MATLAB GPU support
= version 3: Accelereyes Jacket GPU support
s C++

=« Optimized reference baselines for larger
applications

Experiments on ML kernels

m OptiML m Parallelized MATLAB mMATLAB + Jacket

Naive Bayes

25 110.0 |

2.0
1.5
1.0
0.5
0.0

coPrENNWW
ocuouououwu

1 CPU2 CPU 4 CPUS8 CPU CPU + 1CPU 2CPU 4CPU 8CPU CPU + 1 CPU 2 CPU 4 CPU 8 CPU CPU +
GPU GPU GPU

Normalized Execution Time

SVM _ Linear
' Regression

4.0
3.0
2.0
1.0
0.0

1CPU 2CPU 4CPU 8CPU CPU + 1 CPU 2 CPU 4 CPU 8 CPU CPU + 1 CPU 2 CPU 4CPU 8CPU CPU +
GPU GPU GPU

Experiments on larger apps

mOptiML ®C++

Normalized Execution Time

i
m

(o)}
I ’

1CPU 2CPU 4 CPU 8CPU

LBP

SPADE

1CPU 2CPU 4CPU

8 CPU

(o))
oo
I

1 CPU

o ®
e
<t ™M
™Mm ™M
T T

2CPU 4 CPU

8 CPU

Impact of Op Fusion

mC++ mQOptiML Fusing mOptiML No Fusing

™
o

W
Ul

W

N
Ul

Normalized Execution Time

2
Processors

4

Summary

m DSLs are a promising parallel programming
platform

= Capable of achieving portability, productivity, and high
performance

m OptiML is a proof-of-concept DSL for ML
embedded in Scala, using the Lightweight
Modular Staging (LMS) framework and Delite

m OptiML translates simple, declarative machine
learning operations to optimized code for
multiple platforms

m Outperforms MATLAB and C++ on a set of well-
known machine learning applications

Thank you!

m For the brave, find us on Github:
m https://qgithub.com/stanford-ppl/Delite
= (very alpha)

m Comments and criticism very
welcome

m Questions?

https://github.com/stanford-ppl/Delite
https://github.com/stanford-ppl/Delite
https://github.com/stanford-ppl/Delite

backup

OptiML: Approach

m Encourage a functional, parallelizable style
through restricted semantics

= Fine-grained, composable map-reduce operators
OptiML does not have to be conservative

m M
(d Guarantees major properties (e.g.
parallelizable) by construction

m Automatically synchronize parallel iteration
over domain-specific data structures

= Exploit structured communication patterns (nodes
in @ graph may only access neighbors, etc.)

m Defer as many implementation-specific
details to compiler and runtime as possible

Examp

le OptiML / MATLAB code

(Gaussian Discriminant Analysis)

IIx: II'rainingSet[DoubIe] ——

// muO, mul : Vector[Double]

val sigma =

sum(0,x.numSamples) {

if (x.labe

s(4 == false) {

(X(L)-muO, .trans.outer muO)

}

else{

(X(L)-mulj).trans.outer(x(_)-ful)

}
}

Implicitly parallel Restricted index
control structures semantics

OptiML code

ML-specific data types

% X : Matrix, y: Vector
% muO, mul: Vector

n = size(x,2);
sigma = zeros(n,n);

parfor i=1:length(y)
if (y(i) == 0)
sigma = sigma + (X(i,:)-mu0)*(x(i,:)-mu0);
else
sigma = sigma + (x(i,:)-mu1)™*(x(i,:)-mul);
end
end

(parallel) MATLAB code

Experiments on ML kernels (C++)

®m OptiML m Parallelized MATLAB m C++

=
)
2
=
1%
)
X
il
o
0
N
©
£
1
o
r2

8
CPU CPU CPU CPU

CPU
+
GPU

Naive Bayes

M
)

7

1CPU 2CPU 4CPU 8CPU CPU +
GPU

1CPU 2CPU 4CPU 8 CPU CPU +
GPU

-
o
-

1CPU 2CPU 4 CPU 8 CPU

Linear Regression
S

1CPU 2CPU 4 CPU 8 CPU CPU +
GPU

1CPU 2CPU 4CPU 8CPU CPU +
GPU

Dynamic Optimizations

m Relaxed dependencies

= Iterative algorithms with inter-loop dependencies
prohibit task parallelism

= Dependencies can be relaxed at the cost of a marginal
loss in accuracy

= Relaxation percentage is run-time configurable

m Best effort computations

= Some computations can be dropped and still generate
acceptable results

= Provide data structures with “best effort” semantics,
along with policies that can be chosen by DSL users

Dynamic optimizations

K-means Best Effort SVM Relaxed Dependencies

Normalized Execution Time

0.2 -

0 .
m K-means m Best-effort (1.2% error)
m Best-effort (4.2% error) ® Best-effort (7.4% error) B SVM m Relaxed SVM (+ 1% error)

