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Background

 We are researchers in programming 
languages, parallel programming, and 
computer architecture

 Working with machine learning and 
bioinformatics groups at Stanford and 
elsewhere

 Would love to work with you and get 
your feedback, suggestions, and 
criticism
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OptiML: A DSL For ML

 Productive
 Operate at a higher level of abstraction

 Focus on algorithmic description, get parallel 
performance

 Portable
 Single source => Multiple heterogeneous targets

 Not possible with today’s MATLAB support

 High Performance
 Builds and optimizes an intermediate 

representation (IR) of programs

 Generates efficient code specialized to each target 



OptiML: Overview

 Provides a familiar (MATLAB-like) language and 
API for writing ML applications
 Ex. val c = a * b (a, b are Matrix[Double]) 

 Implicitly parallel data structures
 General data types: Vector[T], Matrix[T], Graph[V,E]

 Independent from the underlying implementation

 Specialized data types: Stream, TrainingSet, TestSet, 
IndexVector, Image, Video ..

 Encode semantic information & structured, synchronized 
communication

 Implicitly parallel control structures
 sum{…}, (0::end) {…}, gradient { … },  untilconverged { … }

 Allow anonymous functions with restricted semantics to be 
passed as arguments of the control structures



OptiML: K-means example
untilconverged(mu, tol){ mu =>

// calculate distances to current centroids

val c = (0::m){i =>

val allDistances = mu mapRows { centroid =>

// distance from sample x(i) to centroid

((x(i)-centroid)*(x(i)-centroid)).sum

}

allDistances.minIndex

}

// move each cluster centroid to the

// mean of the points assigned to it

val newMu = (0::k,*) { i =>

val (weightedpoints, points) = sum(0,m) { j =>

if (c(i) == j){

(x(i),1)

}

}

if (points == 0) Vector.zeros(n)

else weightedpoints / points

}

newMu

}

control structure can only 

access indices i and j 

(disjoint)

Multiple granularities of 
parallelism

normal 
matrix/vector 
arithmetic syntax



OptiML vs. MATLAB

 OptiML

 Statically typed

 No explicit 
parallelization

 Automatic GPU data 
management via run-
time support

 Inherits Scala features 
and tool-chain

 Machine learning 
specific abstractions

 MATLAB

 Dynamically typed

 Applications must 
explicitly choose 
between vectorization
or parallelization

 Explicit GPU data 
management

 Widely used, 
numerous libraries and 
toolboxes



MATLAB parallelism

 `parfor` is nice, but not always best

 MATLAB uses heavy-weight MPI processes under the hood

 Precludes vectorization, a common practice for best 
performance

 GPU code requires different constructs

 The application developer must choose an implementation, 
and these details are all over the code

ind = sort(randsample(1:size(data,2),length(min_dist)));

data_tmp = data(:,ind);

all_dist = zeros(length(ind),size(data,2));

parfor i=1:size(data,2)

all_dist(:,i) = sum(abs(repmat(data(:,i),1,size(data_tmp,2)) -

data_tmp),1)';

end

all_dist(all_dist==0)=max(max(all_dist));
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Optimizations

 Common subexpression elimination (CSE), 
Dead code elimination (DCE), Code motion

 Pattern rewritings
 Linear algebra simplifications
 Shortcuts to help fusing

 Op fusing
 can be especially useful in ML due to fine-grained 

operations and low arithmetic intensity

Coarse-grained: optimizations happen on 
vectors and matrices



OptiML Linear Algebra 
Rewrite Example

 A straightforward translation of the Gaussian Discriminant 
Analysis (GDA) algorithm from the mathematical 
description produces the following code:

 A much more efficient implementation recognizes that

 Transformed code was 20.4x faster with 1 thread and 
48.3x faster with 8 threads.   

val sigma = sum(0,m) { i =>
if (x.labels(i) == false) {
((x(i) - mu0).t) ** (x(i) - mu0)

else
((x(i) - mu1).t) ** (x(i) - mu1)

}
}



Putting it all together: SPADE

kernelWidth

Downsample:

L1 distances 

between all 106

events in 13D 

space… reduce to 

50,000 events

val distances = Stream[Double](data.numRows, data.numRows){
(i,j) => dist(data(i),data(j))

}

for (row <- distances.rows) {
if(densities(row.index) == 0) { 

val neighbors = row find { _ < apprxWidth }
densities(neighbors) = row count { _ < kernelWidth }

}
}



val distances = Stream[Double](data.numRows, data.numRows){

(i,j) => dist(data(i),data(j))

}

for (row <- distances.rows) {

row.init // expensive! part of the stream foreach operation

if(densities(row.index) == 0) { 

val neighbors = row find { _ < apprxWidth }

densities(neighbors) = row count { _ < kernelWidth }

}

}

SPADE transformations

row is 235,000 elements 

in one typical dataset –

fusing is a big win!



SPADE generated code

// FOR EACH ELEMENT IN ROW

while (x155 < x61) {

val x168 = x155 * x64

var x180 = 0

// INITIALIZE STREAM VALUE (dist(i,j))

while (x180 < x64) {

val x248 = x164 + x180

// …

}

// VECTOR FIND

if (x245) x201.insert(x201.length, x155)

// VECTOR COUNT

if (x246) {

val x207 = x208 + 1

x208 = x207

}

x155 += 1

}

From a ~5 line 

algorithm 

description in 

OptiML

…to an efficient, 

fused, imperative 

version that closely 

resembles a hand-

optimized C++ 

baseline!



Performance Results

 Machine
 Two quad-core Nehalem 2.67 GHz processors
 NVidia Tesla C2050 GPU

 Application Versions
 OptiML + Delite
 MATLAB

 version 1: multi-core (parallelization using 
“parfor” construct and BLAS)

 version 2: MATLAB GPU support
 version 3: Accelereyes Jacket GPU support 

 C++
 Optimized reference baselines for larger 

applications



Experiments on ML kernels
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Experiments on larger apps
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Impact of Op Fusion
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Summary

 DSLs are a promising parallel programming 
platform
 Capable of achieving portability, productivity, and high 

performance

 OptiML is a proof-of-concept DSL for ML 
embedded in Scala, using the Lightweight 
Modular Staging (LMS) framework and Delite

 OptiML translates simple, declarative machine 
learning operations to optimized code for 
multiple platforms

 Outperforms MATLAB and C++ on a set of well-
known machine learning applications



Thank you!

 For the brave, find us on Github:

 https://github.com/stanford-ppl/Delite

 (very alpha)

 Comments and criticism very 
welcome

 Questions?

https://github.com/stanford-ppl/Delite
https://github.com/stanford-ppl/Delite
https://github.com/stanford-ppl/Delite


backup



OptiML: Approach

 Encourage a functional, parallelizable style 
through restricted semantics
 Fine-grained, composable map-reduce operators

 Map ML operations to parallel operations 
(domain decomposition)

 Automatically synchronize parallel iteration 
over domain-specific data structures
 Exploit structured communication patterns (nodes 

in a graph may only access neighbors, etc.)

 Defer as many implementation-specific 
details to compiler and runtime as possible

OptiML does not have to be conservative

Guarantees major properties (e.g. 

parallelizable) by construction



% x : Matrix, y: Vector

% mu0, mu1: Vector

n = size(x,2);

sigma = zeros(n,n);

parfor i=1:length(y)

if (y(i) == 0)

sigma = sigma + (x(i,:)-mu0)’*(x(i,:)-mu0);

else

sigma = sigma + (x(i,:)-mu1)’*(x(i,:)-mu1);

end

end

Example OptiML / MATLAB code
(Gaussian Discriminant Analysis)

// x : TrainingSet[Double]

// mu0, mu1 : Vector[Double]

val sigma = sum(0,x.numSamples) { 

if (x.labels(_) == false) {

(x(_)-mu0).trans.outer(x(_)-mu0)

}

else {

(x(_)-mu1).trans.outer(x(_)-mu1)

}

}

OptiML code (parallel) MATLAB code

ML-specific data types

Implicitly parallel

control structures

Restricted index 

semantics



Experiments on ML kernels (C++)

OptiML Parallelized MATLAB C++
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Dynamic Optimizations

 Relaxed dependencies
 Iterative algorithms with inter-loop dependencies 

prohibit task parallelism

 Dependencies can be relaxed at the cost of a marginal 
loss in accuracy

 Relaxation percentage is run-time configurable

 Best effort computations
 Some computations can be dropped and still generate 

acceptable results

 Provide data structures with “best effort” semantics, 
along with policies that can be chosen by DSL users 



Dynamic optimizations

0

0.2

0.4

0.6

0.8

1

1.2

N
o

r
m

a
li
z
e
d

 E
x
e
c
u

ti
o

n
 T

im
e

K-means Best-effort (1.2% error)

Best-effort (4.2% error) Best-effort (7.4% error) SVM Relaxed SVM (+ 1% error)

K-means Best Effort SVM Relaxed Dependencies


