
OptiML: An Implicitly Parallel

Domain-Specific Language for ML

Arvind K. Sujeeth , HyoukJoong Lee, Kevin J. Brown,
Hassan Chafi , Michael Wu, Anand Atreya , Kunle Olukotun

Stanford University
Pervasive Parallelism Laboratory (PPL)

Tiark Rompf , Martin Odersky
Ecole Polytechnique Federale de Lausanne (EPFL),

Programming Methods Laboratory

Background

ÂWe are researchers in programming
languages, parallel programming, and
computer architecture

ÂWorking with machine learning and
bioinformatics groups at Stanford and
elsewhere

ÂWould love to work with you and get
your feedback, suggestions, and
criticism

Heterogeneous Parallel
Programming

Cray

Jaguar

Sun

T2

Nvidia

Fermi

Altera

FPGA

MPI

Pthreads

OpenMP

CUDA

OpenCL

Verilog

VHDL

Programmability Chasm

Too many different programming models

Cray

Jaguar

Sun

T2

Nvidia

Fermi

Altera

FPGA

MPI

Pthreads

OpenMP

CUDA

OpenCL

Verilog

VHDL

Virtual

Worlds

Personal

Robotics

Data

informatics

Scientific

Engineering

Applications

Performance

Productivity Generality

The Ideal Parallel Programming
Language

Successful Languages

Performance

Productivity Generality

Successful Languages

Performance

Productivity Generality

DSLs

OptiML: A DSL For ML

Â Productive
Â Operate at a higher level of abstraction

Â Focus on algorithmic description, get parallel
performance

Â Portable
Â Single source => Multiple heterogeneous targets

Â Not possible with todayôs MATLAB support

Â High Performance
Â Builds and optimizes an intermediate

representation (IR) of programs

Â Generates efficient code specialized to each target

OptiML: Overview

Â Provides a familiar (MATLAB - like) language and
API for writing ML applications
Â Ex. val c = a * b (a, b are Matrix[Double])

Â Implicitly parallel data structures
Â General data types: Vector[T], Matrix[T], Graph[V,E]

Â Independent from the underlying implementation

Â Specialized data types: Stream, TrainingSet , TestSet ,
IndexVector , Image, Video ..

Â Encode semantic information & structured, synchronized
communication

Â Implicitly parallel c ontrol structures
Â sum{é}, (0::end) {é}, gradient { é }, untilconverged { é }

Â Allow anonymous functions with restricted semantics to be
passed as arguments of the control structures

OptiML: K-means example
untilconverged(mu, tol){ mu =>

// calculate distances to current centroids

val c = (0::m){i =>

val allDistances = mu mapRows { centroid =>

// distance from sample x(i) to centroid

((x(i)-centroid)*(x(i)-centroid)).sum

}

allDistances.minIndex

}

// move each cluster centroid to the

// mean of the points assigned to it

val newMu = (0::k,*) { i =>

val (weightedpoints, points) = sum(0,m) { j =>

if (c(i) == j){

(x(i),1)

}

}

if (points == 0) Vector.zeros(n)

else weightedpoints / points

}

newMu

}

control structure can only

access indices i and j

(disjoint)

Multiple granularities of
parallelism

normal
matrix/vector
arithmetic syntax

OptiML vs. MATLAB

Â OptiML

Â Statically typed

Â No explicit
parallelization

Â Automatic GPU data
management via run -
time support

Â Inherits Scala features
and tool -chain

Â Machine learning
specific abstractions

Â MATLAB

Â Dynamically typed

Â Applications must
explicitly choose
between vectorization
or parallelization

Â Explicit GPU data
management

Â Widely used,
numerous libraries and
toolboxes

MATLAB parallelism

Â ` parfor ` is nice, but not always best

Â MATLAB uses heavy -weight MPI processes under the hood

Â Precludes vectorization , a common practice for best
performance

Â GPU code requires different constructs

Â The application developer must choose an implementation,
and these details are all over the code

ind = sort(randsample(1:size(data,2),length(min_dist)));

data_tmp = data(:,ind);

all_dist = zeros(length(ind),size(data,2));

parfor i=1:size(data,2)

all_dist(:,i) = sum(abs(repmat(data(:,i),1,size(data_tmp,2)) -

data_tmp),1)';

end

all_dist(all_dist==0)=max(max(all_dist));

OptiML Implementation

OptiML

program

eDSL Compiler

implemented with

Delite framework

build, analyze,

optimize

intermediate

representation

Scheduling

Address space

management

Communication/

Synchronization

Delite

Execution

Graph

Delite runtime

Scala ops

CUDA ops

.

.

.

Other

targets

Optimizations

Â Common subexpression elimination (CSE),
Dead code elimination (DCE), Code motion

Â Pattern rewritings
Â Linear algebra simplifications
Â Shortcuts to help fusing

Â Op fusing
Â can be especially useful in ML due to fine -grained

operations and low arithmetic intensity

Coarse -grained: optimizations happen on
vectors and matrices

OptiML Linear Algebra
Rewrite Example

Â A straightforward translation of the Gaussian Discriminant
Analysis (GDA) algorithm from the mathematical
description produces the following code:

Â A much more efficient implementation recognizes that

Â Transformed code was 20.4x faster with 1 thread and
48.3x faster with 8 threads.

val sigma = sum (0,m) { i =>
if (x.labels (i) == false) {

((x(i) - mu0).t) ** (x(i) - mu0)
else

((x(i) - mu1).t) ** (x(i) - mu1)
}

}

