Global Convergence of Stochastic Gradient Descent for Some Non-convex Matrix Problems

Christopher De Sa, Kunle Olukotun, and Chris Ré

cdesa@stanford.edu, kunle@stanford.edu, chrismre@stanford.edu
Departments of Electrical Engineering and Computer Science, Stanford University

Main Idea

We want to analyze SGD for matrix completion.
\triangleright Common problem in machine learning
\triangleright Used in industry by Oracle, MADLib, Twitter, etc

This problem appears in a variety of applications:
\triangleright matrix completion
\triangleright general data analysis
\triangleright PCA
\triangleright subspace tracking
\triangleright optimization
Previous work: great local convergence results
\triangleright fast convergence if we initialize with SVD
\triangleright SGD known to converge in practice without initialization
\triangleright gap between theory and practice
Our contribution: This widely-used algorithm converges globally, using only random initialization!
\triangleright We also develop intuition for how to set the step size.

Matrix Completion Problem

Goal is to recover a low-rank matrix A using:

$$
\text { minimize } \mathbf{E}\left[\|\tilde{A}-X\|_{F}^{2}\right]
$$

$$
\text { subject to } X \in \mathbb{R}^{n \times n}, \operatorname{rank}(X) \leq p, X \succeq 0
$$

where $p \in \mathbb{Z}$ and \tilde{A} is an unbiased sample of A. We can simplify this with a quadratic substitution $X=Y Y^{T}$ (Burer-Monteiro),

$$
\begin{aligned}
& \text { minimize } \mathbf{E}\left[\left\|\tilde{A}-Y Y^{T}\right\|_{F}^{2}\right] \\
& \text { subject to } Y \in \mathbb{R}^{n \times p}
\end{aligned}
$$

This leaves us with an unconstrained non-convex problem.

Algorithm Derivation

Stochastic gradient descent on quadratic decomposition:

$$
Y_{k+1}=Y_{k}+\alpha_{k}\left(\tilde{A}_{k}-Y_{k} Y_{k}^{T}\right) Y_{k}
$$

By choosing an appropriate Riemannian manifold, we can get

$$
Y_{k+1}=\left(I+\eta_{k} \tilde{A}_{k}\right) Y_{k}\left(1+\eta_{k} Y_{k}^{T} Y_{k}\right)^{-1}
$$

and if we ignore the radial component, we get the simple rule

$$
Y_{k+1}=\left(I+\eta_{k} \tilde{A}_{k}\right) Y_{k}
$$

Many Applications

Entrywise sampling
\square Each sample is a single entry of A.
\triangleright Entries are chosen independently and with equal weight.
\triangleright We need to impose an incoherence constraint for rapid convergence to be possible. (This is standard.)
\triangleright We can then bound the second moment of the sample with

$$
\sigma^{2} \leq \mu^{2}\left(1-\mu^{2}\right)\|A\|_{F}^{2}
$$

\triangleright Each step very fast: write only mone row of Y.

Trace sampling

\triangleright We are given the value of $v^{T} A w$ for random vectors v and w \triangleright For this sampling scheme, assuming $n>50$,

$$
\sigma^{2} \leq 20\|A\|_{F}^{2}
$$

Subspace sampling

$\triangleright A$ is a projection matrix.
\triangleright For a random v in the column space of A, and random diagonal sampling matrices Q and R with $\mathbf{E}[Q]=\mathbf{E}[R]=I$, we use $\tilde{A}=Q v v^{T} R$.
\triangleright We can also bound the second moment of the sample here.
Noisy sampling
\triangleright Easy to handle noisy samples in any application.
\triangleright Can handle both additive and multiplicative noise.
Takeaway point: For all of the above applications, as long as the spectrum of A is fixed as n increases, the number of iterations required for convergence is only

$$
T=O\left(\epsilon^{-1} n \log n\right) .
$$

These plots show convergence of the angular phase of Alecton on synthetic datasets, varying sampling distribution, step size, problem rank, and problem size.

