Global Convergence of Stochastic Gradient Descent for Some Non-convex Matrix Problems

Christopher De Sa Kunle Olukotun Christopher Ré {cdesa,kunle,chrismre}@stanford.edu

Stanford

July 7, 2015

- Matrix completion: ubiquitous problem
 - recover a low rank matrix from a series of samples
- ► SGD for matrix completion: commonly used in industry
 - ► IBM, Oracle, Twitter¹ , Jellyfish²

¹Gupta et al., "WTF: The Who to Follow Service at Twitter".

 $^{^2\}mbox{Recht}$ and Ré, "Parallel stochastic gradient algorithms for large-scale matrix completion".

³E. Candès, Li, and Soltanolkotabi, "Phase Retrieval via Wirtinger Flow: Theory and Algorithms"; Jain, Netrapalli, and Sanghavi, "Low-rank Matrix Completion Using Alternating Minimization".

- Matrix completion: ubiquitous problem
 - recover a low rank matrix from a series of samples
- ▶ SGD for matrix completion: commonly used in industry
 - ► IBM, Oracle, Twitter¹ , Jellyfish²
- ► Previous work: great local convergence results³
 - require initialization phase like SVD

¹Gupta et al., "WTF: The Who to Follow Service at Twitter".

 $^{^2\}mbox{Recht}$ and Ré, "Parallel stochastic gradient algorithms for large-scale matrix completion".

³E. Candès, Li, and Soltanolkotabi, "Phase Retrieval via Wirtinger Flow: Theory and Algorithms"; Jain, Netrapalli, and Sanghavi, "Low-rank Matrix Completion Using Alternating Minimization".

- ► Matrix completion: ubiquitous problem
 - recover a low rank matrix from a series of samples
- ► SGD for matrix completion: commonly used in industry
 - ▶ IBM, Oracle, Twitter¹ , Jellyfish²
- ► Previous work: great local convergence results³
 - require initialization phase like SVD

Gap between theory and practice

- ▶ in theory: requires initialization step and/or other conditions
- ▶ in practice: works basically all the time

¹Gupta et al., "WTF: The Who to Follow Service at Twitter".

 $^{^2\}mbox{Recht}$ and Ré, "Parallel stochastic gradient algorithms for large-scale matrix completion".

³E. Candès, Li, and Soltanolkotabi, "Phase Retrieval via Wirtinger Flow: Theory and Algorithms"; Jain, Netrapalli, and Sanghavi, "Low-rank Matrix Completion Using Alternating Minimization".

- Matrix completion: ubiquitous problem
 - recover a low rank matrix from a series of samples
- ► SGD for matrix completion: commonly used in industry
 - ► IBM, Oracle, Twitter , Jellyfish
- Previous work: great local convergence results
 - require initialization phase like SVD

Gap between theory and practice

- ▶ in theory: requires initialization step and/or other conditions
- in practice: works basically all the time

Our Contribution

We show that this algorithm converges globally and give a rate!

using random initialization

Matrix Completion Problem

We take samples $\tilde{A} \in \mathbb{R}^{n \times n}$ of a matrix $A \in \mathbb{R}^{n \times n}$.

Goal is to fit low-rank matrix X to samples:

minimize
$$\mathbf{E}\left[\left\|\tilde{A}-X\right\|_F^2\right]$$
 subject to $X \in \mathbb{R}^{n \times n}$, rank $(X) \le 1, X \succeq 0$.

Apply quadratic substitution $X = yy^T$ (Burer-Monteiro):

minimize
$$\mathbf{E}\left[\left\|\tilde{A}-yy^T\right\|_F^2\right]$$
 subject to $y\in\mathbb{R}^n$.

Multiple Applications of Matrix Completion

- standard matrix completion¹
- matrix sensing²
- subspace tracking³

¹E. J. Candès and Recht, "Exact Matrix Completion via Convex Optimization".

² Jain, Netrapalli, and Sanghavi, "Low-rank Matrix Completion Using Alternating Minimization"; E. Candès, Li, and Soltanolkotabi, "Phase Retrieval via Wirtinger Flow: Theory and Algorithms".

³Balzano, Nowak, and Recht, "Online identification and tracking of subspaces from highly incomplete information".

Multiple Applications of Matrix Completion

- ▶ standard matrix completion¹ ⇔ entrywise sampling
- ▶ matrix sensing $^2 \Leftrightarrow$ trace sampling
- ▶ subspace tracking $^3 \Leftrightarrow$ subspace sampling

How to represent many applications?

 $\text{different application} \Longleftrightarrow \text{different noise model}$

- same optimization problem
- ightharpoonup different distribution for \tilde{A}

¹E. J. Candès and Recht, "Exact Matrix Completion via Convex Optimization".

 $^{^2}$ Jain, Netrapalli, and Sanghavi, "Low-rank Matrix Completion Using Alternating Minimization"; E. Candès, Li, and Soltanolkotabi, "Phase Retrieval via Wirtinger Flow: Theory and Algorithms".

³Balzano, Nowak, and Recht, "Online identification and tracking of subspaces from highly incomplete information".

Weak Noise Model

How to handle many applications?

different application ←⇒ different noise model

Use only weak assumptions about the samples \tilde{A} :

- $ightharpoonup \tilde{A}$ is an *unbiased estimator* for A.
- ▶ Bound only the variance of \tilde{A} .

Also: easily handle additional noise.

Outline

1 Analyzing the Problem

2 Our Version of SGD

3 Proving Convergence

4 Experiments

Outline

1 Analyzing the Problem

2 Our Version of SGD

3 Proving Convergence

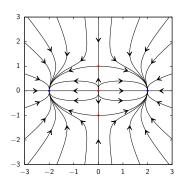
4 Experiments

Gradient Flow for 2D Case

Simple gradient flow for 2D case:

$$\dot{x} = 4x - (x^2 + y^2)x$$

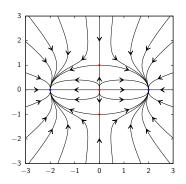
 $\dot{y} = y - (x^2 + y^2)y$



Non-Convexity in Gradient Flow

Consequences of non-convexity:

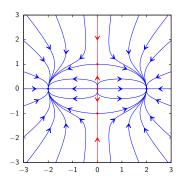
- we get pushed in different directions
- ▶ there are multiple unstable fixed points



Bad Trajectory

If we initialize on a bad (red) trajectory, we may be unable to escape.

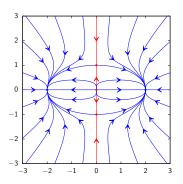
- even near bad trajectory, may take a long time to converge
- consequence of unstable fixed points



Consequences for SGD

Using weak noise model:

- can't show convergence from everywhere in reasonable time
 - can't show convergence from initial points near bad trajectory
- can't show almost sure convergence from anywhere
 - ► algorithm can always "jump" onto bad trajectory
 - ▶ then stay there for an arbitrarily long time



Outline

1 Analyzing the Problem

- 2 Our Version of SGD
- 3 Proving Convergence

4 Experiments

Standard SGD

Standard SGD gives the update rule

$$y_{k+1} = y_k - 4\alpha_k \left(y_k y_k^\mathsf{T} y_k - \tilde{A}_k y_k \right).$$

By using a variable step size scheme, update rule becomes:

$$y_{k+1} = \left(1 + \eta \tilde{A}_k\right) y_k \left(1 + \eta \|y_k\|^2\right)^{-1}.$$

Alecton Update Rule

$$y_{k+1} = \left(1 + \eta \tilde{A}_k\right) y_k.$$

Algorithm Alecton

Algorithm Alecton Overview

- ▶ (Initialization) Do uniform random initialization such that $||y_0|| = 1$.
- (Angular Phase) Run SGD with the Alecton update rule to recover the angular component.

$$y_{k+1} = \left(1 + \eta \tilde{A}_k\right) y_k.$$

► (Radial Phase) Use averaging to recover the radial component.

All steps of algorithm simple; easy to compute.

Outline

- 1 Analyzing the Problem
- 2 Our Version of SGD

3 Proving Convergence

4 Experiments

Analyze Non-Convex SGD Using Martingales

Using a standard Lyapunov-function approach won't work.

► this approach shows convergence from everywhere, which we've shown doesn't happen

Martingale approach:

- handles processes which can fail with some probability
- bounds the probability of failure

Measuring Convergence

Success condition

$$\rho_k = \frac{(u_1^T y_k)^2}{\|y_k\|^2} \ge 1 - \epsilon,$$

where u_1 is the dominant eigenvector of A.

We let F_t , the *failure event*, denote the event that success has not occurred by iteration t.

Only Constrain Second Moment of Samples

Second Moment Constraint

$$\mathbf{E}\left[\left(y^{T}\tilde{A}z\right)^{2}\right] \leq \sigma^{2} \|y\|^{2} \|z\|^{2}.$$

Convergence Result

Theorem

For any $\chi > 0$, if we run for t iterations where

$$t \geq \frac{n \log n}{\epsilon} F(\sigma, A) G(\chi),$$

then the probability of failure is bounded by

$$P(F_t) \leq \chi$$
.

Takeaway point

- ▶ The $n \log n$ part is standard for matrix completion algorithms.
- ▶ The ϵ^{-1} is typical for even convex SGD.
- ▶ For all applications we looked at, $F(\cdot)$ is independent of n.

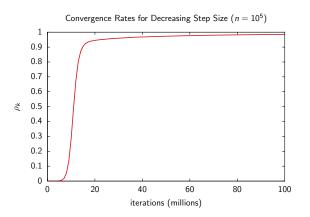
Outline

- 1 Analyzing the Problem
- 2 Our Version of SGD

3 Proving Convergence

4 Experiments

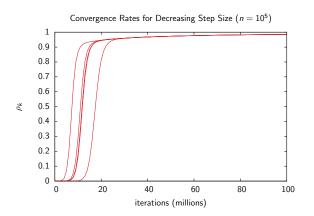
Alecton Converges for Large Datasets



Convergence trajectory of Alecton for entrywise sampling.

▶ 1.5 GB sparse dataset ($A \in \mathbb{R}^{10^5 \times 10^5}$)

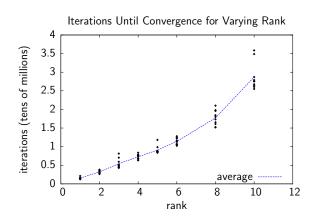
Alecton Converges for Large Datasets



Convergence trajectory of Alecton for entrywise sampling.

- ▶ 1.5 GB sparse dataset $(A \in \mathbb{R}^{10^5 \times 10^5})$
- convergence time varies for different initializations

Alecton Also Works for Higher-Rank Recovery



Iterations until convergence for recovering higher-rank estimates.

- ▶ same 1.5 GB sparse entrywise sampling dataset
- good practical scaling with rank

Conclusion

- ► SGD for Matrix completion is a ubiquitous algorithm.
 - ▶ we provide a global convergence result
 - typically requires $t = O(n\epsilon^{-1} \log n)$ timesteps
- Result applies to many applications
 - ► collaborative filtering, subspace tracking, matrix sensing, etc.
- Scales well to big data!

Conclusion

- ► SGD for Matrix completion is a ubiquitous algorithm.
 - ▶ we provide a global convergence result
 - typically requires $t = O(n\epsilon^{-1} \log n)$ timesteps
- ► Result applies to many applications
 - ► collaborative filtering, subspace tracking, matrix sensing, etc.
- ► Scales well to big data!

Thank you!

Questions?

contact: cdesa@stanford.edu