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Stochastic Gradient Descent for Matrix Completion

» Matrix completion: ubiquitous problem
» recover a low rank matrix from a series of samples

» SGD for matrix completion: commonly used in industry
» IBM, Oracle, Twitter! , Jellyfish?

!Gupta et al., “WTF: The Who to Follow Service at Twitter” .

2Recht and Ré, “Parallel stochastic gradient algorithms for large-scale
matrix completion”.

3E. Candgs, Li, and Soltanolkotabi, “Phase Retrieval via Wirtinger Flow:
Theory and Algorithms”; Jain, Netrapalli, and Sanghavi, “Low-rank Matrix
Completion Using Alternating Minimization”.
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Stochastic Gradient Descent for Matrix Completion

» Matrix completion: ubiquitous problem
» recover a low rank matrix from a series of samples

» SGD for matrix completion: commonly used in industry

» IBM, Oracle, Twitter , Jellyfish
» Previous work: great local convergence results
» require initialization phase like SVD

Gap between theory and practice
» in theory: requires initialization step and/or other conditions

» in practice: works basically all the time

Our Contribution
We show that this algorithm converges globally and give a rate!

» using random initialization
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Matrix Completion Problem

We take samples A € R"*" of a matrix A € R"<".
Goal is to fit low-rank matrix X to samples:
. 2
minimize E [HA - XHF]
subject to X € R™" rank (X) <1,X = 0.

Apply quadratic substitution X = yyT (Burer-Monteiro):

minimize E [

. 2
A=y
o
subject to y € R".
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Multiple Applications of Matrix Completion

» standard matrix completion®
» matrix sensing?

» subspace tracking®

LE. J. Candes and Recht, “Exact Matrix Completion via Convex
Optimization”.

2Jain, Netrapalli, and Sanghavi, “Low-rank Matrix Completion Using
Alternating Minimization”; E. Candeés, Li, and Soltanolkotabi, “Phase Retrieval
via Wirtinger Flow: Theory and Algorithms”.

3Balzano, Nowak, and Recht, “Online identification and tracking of
subspaces from highly incomplete information”.
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Multiple Applications of Matrix Completion

» standard matrix completion! < entrywise sampling
» matrix sensing? < trace sampling

» subspace tracking® < subspace sampling

How to represent many applications?
different application <= different noise model
» same optimization problem
» different distribution for A

LE. J. Candes and Recht, “Exact Matrix Completion via Convex
Optimization”.

2Jain, Netrapalli, and Sanghavi, “Low-rank Matrix Completion Using
Alternating Minimization”; E. Candeés, Li, and Soltanolkotabi, “Phase Retrieval
via Wirtinger Flow: Theory and Algorithms”.

3Balzano, Nowak, and Recht, “Online identification and tracking of
subspaces from highly incomplete information”.



different application <= different noise model I

Use only weak assumptions about the samples A:

» A is an unbiased estimator for A.

» Bound only the variance of A.

Also: easily handle additional noise.
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Analyzing the Problem
Our Version of SGD
Proving Convergence

Experiments
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Simple gradient flow for 2D case:

X = 4x — (x* + y?)x
y=y—-("+yy
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Non-Convexity in Gradient Flow

Consequences of non-convexity:
» we get pushed in different directions

» there are multiple unstable fixed points




Bad Trajectory

If we initialize on a bad (red) trajectory, we may be unable to escape.

» even near bad trajectory, may take a long time to converge

» consequence of unstable fixed points
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Consequences for SGD

Using weak noise model:
» can’t show convergence from everywhere in reasonable time
» can't show convergence from initial points near bad trajectory
» can't show almost sure convergence from anywhere

» algorithm can always “jump” onto bad trajectory
» then stay there for an arbitrarily long time
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Standard SGD gives the update rule
Yi+1 = Yie — 4oy ()/kykT Yk — Ak}’k) .

By using a variable step size scheme, update rule becomes:

v = (1402 vi (1 ld?)

Y1 = (1 + 77/~4k) Yk-
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Algorithm Alecton

Algorithm Alecton Overview
» (Initialization) Do uniform random initialization such that

Iyoll = 1.
» (Angular Phase) Run SGD with the Alecton update rule to
recover the angular component.

Yk+1 = (1 + nfz\k) Yk-

» (Radial Phase) Use averaging to recover the radial component.

All steps of algorithm simple; easy to compute.
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Analyze Non-Convex SGD Using Martingales

Using a standard Lyapunov-function approach won't work.

» this approach shows convergence from everywhere, which
we've shown doesn’t happen

Martingale approach:

» handles processes which can fail with some probability

» bounds the probability of failure

16
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where v is the dominant eigenvector of A.

We let F;, the failure event, denote the event that success has not
occurred by iteration t.
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~ 2
€ |(v722)°| < Iy alP.
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Convergence Result

Theorem
For any x > 0, if we run for t iterations where

nlogn

t> F(o,A)G(x),

€

then the probability of failure is bounded by

P(F:) < x.

Takeaway point
» The nlog n part is standard for matrix completion algorithms.
» The ¢! is typical for even convex SGD.

» For all applications we looked at, F(-) is independent of n.
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Convergence Rates for Decreasing Step Size (n = 10°)
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Convergence trajectory of Alecton for entrywise sampling.

» 1.5 GB sparse dataset (A € R1°5><105)
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Alecton Converges for Large Datasets

Convergence Rates for Decreasing Step Size (n = 10°)
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Convergence trajectory of Alecton for entrywise sampling.

» 1.5 GB sparse dataset (A € R10°x10%)

» convergence time varies for different initializations
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Alecton Also Works for Higher-Rank Recovery

Iterations Until Convergence for Varying Rank
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Iterations until convergence for recovering higher-rank estimates.

» same 1.5 GB sparse entrywise sampling dataset

» good practical scaling with rank



Conclusion

» SGD for Matrix completion is a ubiquitous algorithm.
» we provide a global convergence result
» typically requires t = O(ne~! log n) timesteps
» Result applies to many applications
» collaborative filtering, subspace tracking, matrix sensing, etc.

» Scales well to big datal
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Thank you!
Questions?

contact: cdesa@stanford.edu




	Analyzing the Problem
	Our Version of SGD
	Proving Convergence
	Experiments

