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Stochastic Gradient Descent for Matrix Completion

I Matrix completion: ubiquitous problem
I recover a low rank matrix from a series of samples

I SGD for matrix completion: commonly used in industry

I IBM, Oracle, Twitter1 , Jellyfish2

I Previous work: great local convergence results3

I require initialization phase like SVD

Gap between theory and practice

I in theory: requires initialization step and/or other conditions

I in practice: works basically all the time

1Gupta et al., “WTF: The Who to Follow Service at Twitter”.
2Recht and Ré, “Parallel stochastic gradient algorithms for large-scale

matrix completion”.
3E. Candès, Li, and Soltanolkotabi, “Phase Retrieval via Wirtinger Flow:

Theory and Algorithms”; Jain, Netrapalli, and Sanghavi, “Low-rank Matrix
Completion Using Alternating Minimization”.
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I Previous work: great local convergence results
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Our Contribution

We show that this algorithm converges globally and give a rate!

I using random initialization
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Matrix Completion Problem

We take samples Ã ∈ Rn×n of a matrix A ∈ Rn×n.

Goal is to fit low-rank matrix X to samples:

minimize E

[∥∥∥Ã− X
∥∥∥2
F

]
subject to X ∈ Rn×n, rank (X ) ≤ 1,X � 0.

Apply quadratic substitution X = yyT (Burer-Monteiro):

minimize E

[∥∥∥Ã− yyT
∥∥∥2
F

]
subject to y ∈ Rn.
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Multiple Applications of Matrix Completion

I standard matrix completion1

⇔ entrywise sampling

I matrix sensing2

⇔ trace sampling

I subspace tracking3

⇔ subspace sampling

How to represent many applications?

different application ⇐⇒ different noise model

I same optimization problem

I different distribution for Ã

1E. J. Candès and Recht, “Exact Matrix Completion via Convex
Optimization”.

2Jain, Netrapalli, and Sanghavi, “Low-rank Matrix Completion Using
Alternating Minimization”; E. Candès, Li, and Soltanolkotabi, “Phase Retrieval
via Wirtinger Flow: Theory and Algorithms”.

3Balzano, Nowak, and Recht, “Online identification and tracking of
subspaces from highly incomplete information”.
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Weak Noise Model

How to handle many applications?

different application ⇐⇒ different noise model

Use only weak assumptions about the samples Ã:

I Ã is an unbiased estimator for A.

I Bound only the variance of Ã.

Also: easily handle additional noise.
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Outline

1 Analyzing the Problem

2 Our Version of SGD

3 Proving Convergence

4 Experiments
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Gradient Flow for 2D Case

Simple gradient flow for 2D case:

ẋ = 4x − (x2 + y2)x

ẏ = y − (x2 + y2)y
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Non-Convexity in Gradient Flow

Consequences of non-convexity:

I we get pushed in different directions

I there are multiple unstable fixed points

−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3

9 / 23



Bad Trajectory

If we initialize on a bad (red) trajectory, we may be unable to escape.

I even near bad trajectory, may take a long time to converge

I consequence of unstable fixed points
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Consequences for SGD

Using weak noise model:
I can’t show convergence from everywhere in reasonable time

I can’t show convergence from initial points near bad trajectory

I can’t show almost sure convergence from anywhere
I algorithm can always “jump” onto bad trajectory
I then stay there for an arbitrarily long time
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Standard SGD

Standard SGD gives the update rule

yk+1 = yk − 4αk

(
yky

T
k yk − Ãkyk

)
.

By using a variable step size scheme, update rule becomes:

yk+1 =
(

1 + ηÃk

)
yk

(
1 + η ‖yk‖2

)−1
.

Alecton Update Rule

yk+1 =
(

1 + ηÃk

)
yk .
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Algorithm Alecton

Algorithm Alecton Overview

I (Initialization) Do uniform random initialization such that
‖y0‖ = 1.

I (Angular Phase) Run SGD with the Alecton update rule to
recover the angular component.

yk+1 =
(

1 + ηÃk

)
yk .

I (Radial Phase) Use averaging to recover the radial component.

All steps of algorithm simple; easy to compute.
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Analyze Non-Convex SGD Using Martingales

Using a standard Lyapunov-function approach won’t work.

I this approach shows convergence from everywhere, which
we’ve shown doesn’t happen

Martingale approach:

I handles processes which can fail with some probability

I bounds the probability of failure
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Measuring Convergence

Success condition

ρk =
(uT1 yk)2

‖yk‖2
≥ 1− ε,

where u1 is the dominant eigenvector of A.

We let Ft , the failure event, denote the event that success has not
occurred by iteration t.
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Only Constrain Second Moment of Samples

Second Moment Constraint

E

[(
yT Ãz

)2
]
≤ σ2 ‖y‖2 ‖z‖2 .
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Convergence Result

Theorem

For any χ > 0, if we run for t iterations where

t ≥ n log n

ε
F (σ,A)G (χ),

then the probability of failure is bounded by

P (Ft) ≤ χ.

Takeaway point

I The n log n part is standard for matrix completion algorithms.

I The ε−1 is typical for even convex SGD.

I For all applications we looked at, F (·) is independent of n.
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Alecton Converges for Large Datasets
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I 1.5 GB sparse dataset (A ∈ R105×105)

I convergence time varies for different initializations
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Alecton Also Works for Higher-Rank Recovery
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I same 1.5 GB sparse entrywise sampling dataset

I good practical scaling with rank
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Conclusion

I SGD for Matrix completion is a ubiquitous algorithm.
I we provide a global convergence result
I typically requires t = O(nε−1 log n) timesteps

I Result applies to many applications
I collaborative filtering, subspace tracking, matrix sensing, etc.

I Scales well to big data!

Thank you!

Questions?

contact: cdesa@stanford.edu
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