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Overview What is Gibbs Sampling? Bounding the Sample Bias

Everyone uses Gibbs sampling! Goal: produce samples from some distribution 7 Known result: sequential Gibbs sampling always approaches
> De facto Markov Chain Monte Carlo (MCMC) > Typically, it’s too hard to compute 7 directly. the target distribution over time — no bias.
method for inference. > It’s easy to compute conditional distributions. , , o
> Used for learning in graphical models. Asynchronous Gibbs sampling can have asymptotic bias!
> Works very well in practice. Gibbs sampling: Sample from distribution 7 > Consider example below, with two binary variables.
> Used by many systems such as Factorie, Open- Require: Initial state X; fori € {1,...,n} > We plot the results of 2-thread asynchronous Gibbs on this
Bugs, PGibbs, and DeepDive — including loop model — 9.8% of the mass is measured erroneously!
competition-winners. Select a variable 7 uniformly from {1,... n}. 1
Re-sample X; from its conditional distribution p(0,1) =p(1,0) = p(1,1) = 3 p(0,0) = 0.
’ ’ in 7 given the other variables Xy 1 i1 - | |
I | gD DeepDive Output Sample X. o Diu;oz;g}gg:lenna vs. HOGWILD! Gibbs
’ end loop "ol |

It’s important for Gibbs sampling to run fast!

> Modern hardware (CPU, GPU, FPGA) is parallel, Modeling Asynchronicity

with many computations running at the same time.
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When we read a variable, it could be stale

> No locking — updates based on old values.

> This leads to race conditions Our contribution: bounds on sample bias.
> Unbounded staleness — algorithm won’t neces- > Measure with new metric: sparse variation distance
sarily make progress. > For marginal estimation, sparse variation distance is what

> Gibbs sampling is inherently sequential — the up-

. we really care about.
dates must happen one at a time.

Standard assumption: bound the staleness .
P Let ¢ and v be two distributions on the same space. The

> Define parameter 7: number of writes between . . ) .
p w-sparse variation distance between them is

HOGWILD!: Just parallelize asynchronously ) )
when a variable was read and when it was used.

> Run multiple threads in parallel without locks. :
> We call th?s asynchronolz)ts oxecution. > 7 models everything relevant about the hardware: | — V”S\/(w) = max |u(A) — v(A)],

The id f tochast; dient d ( number of threads, cache properties, etc. |Al<w
- e 1dea Comes rom STochastic gradient descen > Standard technique to analyze HOGWILD! SGD. where |A| is number of variables on which event A de-
(SGD) — Niu et al 2011.

> Very successful for SGD — with guarantees! Standard Metrics pends.

Asynchronous Gibbs Sampling Total variation distance. For a model which satisfies Dobrushin’s condition (o < 1),

- the asymptotic bias is bounded by
> Known to get good par :al.lel scaling > Used to measure convergence of MCMC.
> Actually used by practitioners

thm Hp(t)m _7THSV( ) = (10”“’) '

. Let 1 and v be two distributions on the same space. o0 & -
QD Deeleve YAHOO! The total variation distance between them is

> ...but no theoretical guarantees were known [ = v|lpy = max|u(A) — v(A)], Even if & > 1, as long as a = O(1) and only O(n) steps of

A sequential Gibbs are required to get good marginal estimates,
where A is any event in the space. we can get the following asymptotic bound.

How can we know asynchronous Gibbs works?

> Bound the sample bias — how far are the samples

' ), _ _
produced by the chain from the target distribution? Total influence o of a model. EEO HP fpo—m | | SV(w) = O (1w/n).
> Bound the mixing time — how long do we need to

> Measures the degree to which one variable can de-
run the chain before we are independent of initial pend on the other variables in the model. > Roughly: if sequential Gibbs gets fast estimates, then asyn-

conditions? > Maximum degree is an upper bound for . chronous Gibbs has small bias.
> More details are in the paper.

Folklore says that both of these quantities are not

Let 7 be a probability distribution over some set of

affected too much by asynchronicity. variables I. Let B; be the set of state pairs (X,Y) - =y .
. J )
> Intuition borrowed from SGD, where asynchronic- which differ only at variable j. Let m;(-|Xp\ () BOundlng the MIXIng Time
ity provably has little effect. denote the conditional distribution in 7 of variable The mixing time t, is the number of steps required to be
> But is this actually true? 1 given al.l the other Varlgbles in state X. Then «, close to indenendent of initial conditions
the total influence of 7, is p -
X ¥l > We need t,,;x small for Gibbs sampling to be tractable.
& = 1llax max A nN{@Y) — A \{i} :
ur Contributions e R o The mixing time of a process with distribution P®) s, at
> We show cases where running asynchronously can Model satisfies Dobrushin’s condition if o < 1. . (0 t) 1
greatly affect sample bias and mixing time. > Condition that ensures the rapid mixing of spin bmix = in § £V HP po — P 7THTV = 4 (-
statistics systems.

We provide guaranteed bounds on both the sample

. o o ° Mixing of Sequential vs HOGWILD! Gibbs
bias and the mixing time Asynchronicity can affect the A I

> Using a reasonable restriction on the distribution mixing time! 8 X\ |

> Captures models encountered in practice > See example to the right. f —
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Our contribution: bounds on the mixing time.
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13400 ST g0 e .LO T e on TR D T on BT TR > If model satisfies Dobrushin’s condition (v < 1), there’s
- = o . . . .
13200 | = 18500 = 2 3 R | a known bound on the mixing time of sequential Gibbs.
i 18 —e . :
. Eggg ’ . S25;  Sa \ ] > We can also prove a bound for HOGWILD! Gibbs.
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expected delay parameter (7) expected delay parameter (7) threads Mleng times are about the same:
. . . . ‘ . . . . . . . tm]X—hO O{T
The first two plots show .that the .eXPerlmentall}{ observed mixing times of HOGWILD! Gibbs samphng on two different Ising model > Predicted relationship: 8 o1 -
graphs match our theoretical predictions. The third plot shows wall-clock performance of asynchronous Gibbs on a real KBP dataset, and mix—seq n

compares it to another method, “multi-model” Gibbs, which has similar runtime but produces lower-quality samples.

> HOGWILD! runs much faster on hardware.




