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Overviewp
Everyone uses Gibbs sampling!
. De facto Markov Chain Monte Carlo (MCMC)

method for inference.
. Used for learning in graphical models.
. Works very well in practice.
. Used by many systems such as Factorie, Open-

Bugs, PGibbs, and DeepDive — including
competition-winners.

It’s important for Gibbs sampling to run fast!
. Modern hardware (CPU, GPU, FPGA) is parallel,

with many computations running at the same time.

. Gibbs sampling is inherently sequential — the up-
dates must happen one at a time.

HOGWILD!: Just parallelize asynchronously
. Run multiple threads in parallel without locks.
. We call this asynchronous execution.
. The idea comes from stochastic gradient descent

(SGD) — Niu et al 2011.
. Very successful for SGD — with guarantees!

Asynchronous Gibbs Sampling
. Known to get good parallel scaling
. Actually used by practitioners

. ...but no theoretical guarantees were known

How can we know asynchronous Gibbs works?
. Bound the sample bias — how far are the samples

produced by the chain from the target distribution?
. Bound the mixing time — how long do we need to

run the chain before we are independent of initial
conditions?

Folklore says that both of these quantities are not
affected too much by asynchronicity.
. Intuition borrowed from SGD, where asynchronic-

ity provably has little effect.
. But is this actually true?

Our Contributionsp
The folklore is not necessarily true
. We show cases where running asynchronously can

greatly affect sample bias and mixing time.

We provide guaranteed bounds on both the sample
bias and the mixing time
. Using a reasonable restriction on the distribution
. Captures models encountered in practice

Bounding the Sample Biasp
Known result: sequential Gibbs sampling always approaches
the target distribution over time→ no bias.

Asynchronous Gibbs sampling can have asymptotic bias!
. Consider example below, with two binary variables.
. We plot the results of 2-thread asynchronous Gibbs on this

model — 9.8% of the mass is measured erroneously!
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Our contribution: bounds on sample bias.
. Measure with new metric: sparse variation distance
. For marginal estimation, sparse variation distance is what

we really care about.

Let µ and ν be two distributions on the same space. The
ω-sparse variation distance between them is

‖µ− ν‖SV(ω) = max
|A|≤ω

|µ(A)− ν(A)| ,

where |A| is number of variables on which event A de-
pends.

For a model which satisfies Dobrushin’s condition (α < 1),
the asymptotic bias is bounded by

lim
t→∞

∥∥∥P (t)µ0 − π
∥∥∥

SV(ω)
≤ ατω

(1− α)n
.

Even if α ≥ 1, as long as α = O(1) and only O(n) steps of
sequential Gibbs are required to get good marginal estimates,
we can get the following asymptotic bound.

lim
t→∞

∥∥∥P (t)µ0 − π
∥∥∥

SV(ω)
= O (τω/n) .

. Roughly: if sequential Gibbs gets fast estimates, then asyn-
chronous Gibbs has small bias.

. More details are in the paper.

Bounding the Mixing Timep
The mixing time tmix is the number of steps required to be
close to independent of initial conditions.
. We need tmix small for Gibbs sampling to be tractable.

The mixing time of a process with distribution P (t)µ0 at
time t starting from from distribution µ0 is

tmix = min

{
t

∣∣∣∣∀µ0

∥∥∥P (t)µ0 − P (t)π
∥∥∥

TV
≤ 1

4

}
.

Asynchronicity can affect the
mixing time!
. See example to the right.
. Even models with tmix =

Õ(n) for sequential Gibbs
could have tmix = 2Ω(n) for
asynchronous Gibbs!
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Our contribution: bounds on the mixing time.
. If model satisfies Dobrushin’s condition (α < 1), there’s

a known bound on the mixing time of sequential Gibbs.
. We can also prove a bound for HOGWILD! Gibbs.

tmix−seq ≤
n

1− α
log(4n) tmix−hog ≤

n + ατ

1− α
log(4n).

Mixing times are about the same!

. Predicted relationship:
tmix−hog

tmix−seq
≈ 1 +

ατ

n
.

. HOGWILD! runs much faster on hardware.

What is Gibbs Sampling?p
Goal: produce samples from some distribution π
. Typically, it’s too hard to compute π directly.
. It’s easy to compute conditional distributions.

Gibbs sampling: Sample from distribution π
Require: Initial state Xi for i ∈ {1, . . . , n}

loop
Select a variable i uniformly from {1, . . . , n}.
Re-sample Xi from its conditional distribution

in π given the other variables X{1,...,n}\{i}.
Output sample X .

end loop

Modeling Asynchronicityp
When we read a variable, it could be stale
. No locking→ updates based on old values.
. This leads to race conditions.
. Unbounded staleness → algorithm won’t neces-

sarily make progress.

Standard assumption: bound the staleness
. Define parameter τ : number of writes between

when a variable was read and when it was used.
. τ models everything relevant about the hardware:

number of threads, cache properties, etc.
. Standard technique to analyze HOGWILD! SGD.

Standard Metricsp
Total variation distance.
. Used to measure convergence of MCMC.

Let µ and ν be two distributions on the same space.
The total variation distance between them is

‖µ− ν‖TV = max
A
|µ(A)− ν(A)| ,

where A is any event in the space.

Total influence α of a model.
. Measures the degree to which one variable can de-

pend on the other variables in the model.
. Maximum degree is an upper bound for α.

Let π be a probability distribution over some set of
variables I . Let Bj be the set of state pairs (X, Y )
which differ only at variable j. Let πi(·|XI\{i})
denote the conditional distribution in π of variable
i given all the other variables in state X . Then α,
the total influence of π, is

α = max
i∈I

∑
j∈I

max
(X,Y )∈Bj

∥∥πi(·|XI\{i})− πi(·|YI\{i})
∥∥

TV
.

Model satisfies Dobrushin’s condition if α < 1.
. Condition that ensures the rapid mixing of spin

statistics systems.

Experimentsp
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Performance of HOGWILD! Gibbs on KBP Dataset

HOGWILD!
multi-model

The first two plots show that the experimentally observed mixing times of HOGWILD! Gibbs sampling on two different Ising model
graphs match our theoretical predictions. The third plot shows wall-clock performance of asynchronous Gibbs on a real KBP dataset, and
compares it to another method, “multi-model” Gibbs, which has similar runtime but produces lower-quality samples.


