

Ensuring Rapid Mixing and Low Bias for Asynchronous Gibbs Sampling

Christopher De Sa, Kunle Olukotun, and Christopher Ré

cdesa@stanford.edu, kunle@stanford.edu, chrismre@cs.stanford.edu

Departments of Electrical Engineering and Computer Science, Stanford University

Overview

Everyone uses Gibbs sampling!

- De facto Markov Chain Monte Carlo (MCMC) method for inference.

- ⊳ Used by *many systems* such as Factorie, Open-Bugs, PGibbs, and DeepDive — including competition-winners.

It's important for Gibbs sampling to run fast!

⊳ Modern hardware (CPU, GPU, FPGA) is *parallel*, with many computations running at the same time.

⊳ Gibbs sampling is inherently *sequential* — the updates must happen one at a time.

HOGWILD!: Just parallelize asynchronously

- ⊳ Run multiple threads in parallel *without locks*.
- ▶ We call this *asynchronous execution*.
- > The idea comes from stochastic gradient descent (SGD) — Niu et al 2011.

Asynchronous Gibbs Sampling

▷ ...but *no theoretical guarantees* were known

How can we know asynchronous Gibbs works?

- ⊳ Bound the *sample bias* how far are the samples produced by the chain from the target distribution?
- ⊳ Bound the *mixing time* how long do we need to run the chain before we are independent of initial conditions?

Folklore says that both of these quantities are not affected too much by asynchronicity.

- > Intuition borrowed from SGD, where asynchronicity provably has little effect.
- ▷ But is this actually true?

Our Contributions

The folklore is not necessarily true

▶ We show cases where running asynchronously can greatly affect sample bias and mixing time.

We provide *guaranteed bounds* on both the sample bias and the mixing time

- > Captures models encountered in practice

What is Gibbs Sampling?

Goal: produce samples from some distribution π

- \triangleright Typically, it's *too hard* to compute π directly.
- ▶ It's easy to compute *conditional distributions*.

Gibbs sampling: Sample from distribution π

Require: Initial state X_i for $i \in \{1, ..., n\}$

Select a variable i uniformly from $\{1, \ldots, n\}$. Re-sample X_i from its conditional distribution in π given the other variables $X_{\{1,\ldots,n\}\setminus\{i\}}$. Output sample X.

end loop

Modeling Asynchronicity

When we read a variable, it could be *stale*

- \triangleright No locking \rightarrow updates based on old values.
- ▶ This leads to *race conditions*.
- ▷ Unbounded staleness → algorithm won't necessarily make progress.

Standard assumption: bound the staleness

- \triangleright Define *parameter* τ : number of writes between when a variable was read and when it was used.
- $\triangleright \tau$ models everything relevant about the hardware: number of threads, cache properties, etc.
- ▷ **Standard technique** to analyze HOGWILD! SGD.

Standard Metrics

Total variation distance.

▶ Used to measure convergence of MCMC.

Let μ and ν be two distributions on the same space. The total variation distance between them is

$$\|\mu - \nu\|_{\text{TV}} = \max_{A} |\mu(A) - \nu(A)|,$$

where A is any event in the space.

Total influence α of a model.

- ▶ Measures the degree to which one variable can depend on the other variables in the model.
- \triangleright Maximum degree is an upper bound for α .

Let π be a probability distribution over some set of variables I. Let B_i be the set of state pairs (X, Y)which differ *only at variable* j. Let $\pi_i(\cdot|X_{I\setminus\{i\}})$ denote the *conditional distribution* in π of variable i given all the other variables in state X. Then α , the *total influence* of π , is

$$\alpha = \max_{i \in I} \sum_{j \in I} \max_{(X,Y) \in B_j} \left\| \pi_i(\cdot | X_{I \setminus \{i\}}) - \pi_i(\cdot | Y_{I \setminus \{i\}}) \right\|_{\text{TV}}.$$

Model satisfies **Dobrushin's condition** if $\alpha < 1$.

> Condition that ensures the rapid mixing of spin statistics systems.

Experiments

The first two plots show that the experimentally observed mixing times of HOGWILD! Gibbs sampling on two different Ising model graphs match our theoretical predictions. The third plot shows wall-clock performance of asynchronous Gibbs on a real KBP dataset, and compares it to another method, "multi-model" Gibbs, which has similar runtime but produces lower-quality samples.

200

Bounding the Sample Bias

Known result: sequential Gibbs sampling always approaches the target distribution over time \rightarrow *no bias*.

Asynchronous Gibbs sampling can have asymptotic bias!

- ▷ Consider example below, with two binary variables.
- ▶ We plot the results of 2-thread asynchronous Gibbs on this model — 9.8% of the mass is measured erroneously!

$$p(0,1) = p(1,0) = p(1,1) = \frac{1}{3} \qquad p(0,0) = 0.$$

$$\frac{1/4}{(0,1)} \qquad \frac{1/4}{1/3} \qquad \frac{1/2}{1/4} \qquad \frac{0.4}{0.35} \qquad \frac{0.4}{0.05} \qquad \frac{0.25}{0.05} \qquad \frac{0.15}{0.05} \qquad$$

Our contribution: bounds on sample bias.

- ▶ Measure with new metric: sparse variation distance
- > For *marginal estimation*, sparse variation distance is what we really care about.

Let μ and ν be two distributions on the same space. The ω -sparse variation distance between them is

$$\|\mu - \nu\|_{SV(\omega)} = \max_{|A| < \omega} |\mu(A) - \nu(A)|,$$

where |A| is number of variables on which event A depends.

For a model which satisfies **Dobrushin's condition** ($\alpha < 1$), the asymptotic bias is bounded by

$$\lim_{t \to \infty} \left\| P^{(t)} \mu_0 - \pi \right\|_{SV(\omega)} \le \frac{\alpha \tau \omega}{(1 - \alpha)n}.$$

Even if $\alpha \geq 1$, as long as $\alpha = O(1)$ and only O(n) steps of sequential Gibbs are required to get good marginal estimates, we can get the following asymptotic bound.

$$\lim_{t \to \infty} \left\| P^{(t)} \mu_0 - \pi \right\|_{SV(\omega)} = O\left(\tau \omega/n\right).$$

- ⊳ Roughly: if sequential Gibbs gets fast estimates, then asynchronous Gibbs has small bias.

Bounding the Mixing Time

The *mixing time* t_{mix} is the number of steps required to be close to independent of initial conditions.

 \triangleright We need $t_{\rm mix}$ small for Gibbs sampling to be tractable.

The *mixing time* of a process with distribution $P^{(t)}\mu_0$ at time t starting from from distribution μ_0 is

$$t_{\text{mix}} = \min \left\{ t \middle| \forall \mu_0 \middle| \middle| P^{(t)} \mu_0 - P^{(t)} \pi \middle| \middle|_{\text{TV}} \le \frac{1}{4} \right\}.$$

Asynchronicity can affect the mixing time!

⊳ See example to the right.

 \triangleright Even models with $t_{
m mix}$ = $\tilde{O}(n)$ for sequential Gibbs could have $t_{\rm mix} = 2^{\Omega(n)}$ for asynchronous Gibbs!

Our contribution: bounds on the mixing time.

- \triangleright If model satisfies **Dobrushin's condition** ($\alpha < 1$), there's
- a known bound on the mixing time of sequential Gibbs. ▶ We can also prove a bound for HOGWILD! Gibbs.

$$t_{\text{mix-seq}} \le \frac{n}{1-\alpha} \log(4n)$$
 $t_{\text{mix-hog}} \le \frac{n+\alpha\tau}{1-\alpha} \log(4n)$.

Mixing times are about the same!

- \triangleright Predicted relationship: $\frac{t_{\text{mix-hog}}}{t_{\text{mix-seq}}} \approx 1 + \frac{\alpha \tau}{n}$.
- ▶ HOGWILD! *runs much faster* on hardware.