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Problem: given a probability distribution, 
produce samples from it. 

•  e.g. to do inference in a graphical model 
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Problem: given a probability distribution, 
produce samples from it. 

•  e.g. to do inference in a graphical model 

Algorithm: Gibbs sampling 

•  de facto Markov chain Monte Carlo 
(MCMC) method for inference 

•  produces a series of  approximate samples 
that approach the target distribution 



What is Gibbs Sampling? 
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Algorithm 1 Gibbs sampling

Require: Variables xi for 1  i  n, and distribution ⇡.

loop

Choose s by sampling uniformly from {1, . . . , n}.
Re-sample xs uniformly from P⇡(xs|x{1,...,n}\{s}).
output x

end loop
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Choose a variable to 
update at random. 

x5 
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Compute its conditional 
distribution given the 

other variables. 
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Update the variable by 
sampling from its 

conditional distribution.  

Compute its conditional 
distribution given the 

other variables. 
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What is Gibbs Sampling? 
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Output the current 
state as a sample. 

x5 x5 



Gibbs Sampling: A Practical Perspective 
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Gibbs Sampling: A Practical Perspective 

•  Pros of  Gibbs sampling 
– Easy to implement 
– Updates are sparse à fast on modern CPUs 
 

•  Cons of  Gibbs sampling 
– sequential algorithm à can’t naively parallelize 
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21 64 core 

No parallelism 
Leave up to 98% 
of  performance 

on the table! 
e.g. 



Asynchronous Gibbs Sampling 
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Asynchronous Gibbs Sampling 

•  Run multiple threads in parallel without locks 
– also known as HOGWILD! 
– adapted from a popular technique for stochastic 

gradient descent (SGD) 
 

•  When we read a variable, it could be stale 
– while we re-sample a variable, its adjacent variables 

can be overwritten by other threads 
– semantics not equivalent to standard (sequential) 

Gibbs sampling 
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Question 
 

Does asynchronous Gibbs sampling work? 
…and what does it mean for it to work? 
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Question 
 

Does asynchronous Gibbs sampling work? 
…and what does it mean for it to work? 

want to get 

accurate estimates 
ê 

bound the 
bias 

Two desiderata 

want to be independent 
of  initial conditions 

quickly 
ê 

bound the 
mixing time 
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Previous Work 

•  “Hogwild: A Lock-Free Approach to 
Parallelizing Stochastic Gradient Descent” 
— Niu et al, NIPS 2011. 
follow-up work: Liu and Wright SCIOPS 2015, Liu et 
al JMLR 2015, De Sa et al NIPS 2015, Mania et al 
arxiv 2015 
 

•  “Analyzing Hogwild Parallel Gaussian 
Gibbs Sampling” — Johnson et al, NIPS 2013. 
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Question 
 

Does asynchronous Gibbs sampling work? 
…and what does it mean for it to work? 

Two desiderata 

want to be independent 
of  initial conditions 

quickly 
ê 

bound the 
mixing time 

 

want to get 

accurate estimates 
ê 

bound the 
bias 



Bias 
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Bias 

•  How close are samples to target distribution? 
– standard measurement: total variation distance 

•  For sequential Gibbs, no asymptotic bias: 
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kµ� ⌫kTV = max

A⇢⌦
|µ(A)� ⌫(A)|

“Folklore”: asynchronous Gibbs is also unbiased. 
…but this is not necessarily true! 

8µ0, lim
t!1

kP (t)µ0 � ⇡kTV = 0
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Nonzero Asymptotic Bias 
Asynchronous Bias: Example Distribution
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Measured 

Bias 
(total variation 

distance) 
 

sequential 
< 0.1% 

unbiased 
 

asynchronous 
9.8% 
biased 



Nonzero Asymptotic Bias 
Asynchronous Bias: Example Distribution

�

�.��

�.�

�.��

�.�

�.��

�.�

�.��

�.�

(�,�) (�,�) (�,�) (�,�)

pr
ob

ab
ili

ty

state

Distribution of Sequential vs. Hogwild! Gibbs

sequential
Hogwild!

Bias introduced by Hogwild!-Gibbs (��� samples).

�� / �

45 

Asynchronous Bias: Example Distribution
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Are we using the right metric? 

•  No, total variation distance is too conservative 
– depends on events that don’t matter for inference 
– usually only care about small number of  variables 

•  New metric: sparse variation distance 

 
   where |A| is the number of  variables on which event A depends 
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   where |A| is the number of  variables on which event A depends 
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kµ� ⌫kSV(!) = max

|A|!
|µ(A)� ⌫(A)|

Simple Example: Bias of Asynchronous Gibbs 
 

Total variation: 9.8%    Sparse Variation (          ): 0.4% ! = 1
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Total Influence Parameter 

•  Old condition that was used to study mixing 
times of  spin statistics systems 

 
 
–                        means X and Y equal except variable j. 

–                        is conditional distribution of  variable i 
given the values of  all the other variables in state X.  

– Dobrushin’s condition holds when  
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Asymptotic Result 

•  For any class of  distributions with bounded 
total influence 
– big-O notation is over number of  variables  

•  If           timesteps of  sequential Gibbs suffice to 
achieve arbitrarily small bias 
– measured by      sparse variation distance, for fixed 

•  …then asynchronous Gibbs requires only 
additional timesteps to achieve the same bias! 
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↵ = O(1).
n.

O(n)

!-

O(1)

more details, explicit bounds, et cetera in the paper 

!-
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Question 
 

Does asynchronous Gibbs sampling work? 
…and what does it mean for it to work? 

Two desiderata 

want to be independent 
of  initial conditions 

quickly 
ê 

bound the 
mixing time 
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Mixing Time 

•  How long do we need to run until the samples 
are independent of  initial conditions? 

•  Mixing time of  a Markov chain is the first time 
at which the distribution of  the sample is close 
to the stationary distribution. 
–  in terms of  total variation distance 
–  feasible to run MCMC if  mixing time is small 
  

57 



Mixing Time 

•  How long do we need to run until the samples 
are independent of  initial conditions? 

•  Mixing time of  a Markov chain is the first time 
at which the distribution of  the sample is close 
to the stationary distribution. 
–  in terms of  total variation distance 
–  feasible to run MCMC if  mixing time is small 
  

58 

“Folklore”: asynchronous Gibbs has the same mixing 
time as sequential Gibbs…also not necessarily true! 



Mixing Time Example 

Mixing Time: Example (cont’d)
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    is hardware-
dependent read 

staleness parameter 

⌧

HOGWILD! 
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Sequential Gibbs 
achieves correct 
marginal quickly. 

 t
mix

= O(n log n)

Asynchronous Gibbs 
takes much longer. 

 

Asynchronous Gibbs 
takes much longer. 

 

Asynchronous Gibbs 
takes much longer. 

 t
mix

= exp(⌦(n))

    is hardware-
dependent read 

staleness parameter 

⌧

HOGWILD! 
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Bounding the Mixing Time 

Suppose that our target distribution satisfies 
Dobrushin’s condition (total influence          ).  
•  Mixing time of  sequential Gibbs (known result) 

 
•  Mixing time of  asynchronous Gibbs is  
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Theory Matches Experiment 
Ensuring Rapid Mixing and Low Bias for Asynchronous Gibbs Sampling
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Figure 4. Comparison of estimated mixing time and theory-
predicted (by Equation 2) mixing time as ⌧ increases for a syn-
thetic Ising model graph (n = 1000, � = 3).

the (relatively small) dependence of the mixing time on ⌧
proved to be computationally intractable.

Instead, we use a technique called coupling to the future.
We initialize two chains, X and Y , by setting all the vari-
ables in X

0

to 1 and all the variables in Y
0

to �1. We
proceed by simulating a coupling between the two chains,
and return the coupling time T

c

. Our estimate of the mixing
time will then be ˆt(✏), where P(T

c

� ˆt(✏)) = ✏.

Statement 2. This experimental estimate is an upper
bound for the mixing time. That is, ˆt(✏) � t

mix

(✏).

To estimate ˆt(✏), we ran 10000 instances of the cou-
pling experiment, and returned the sample estimate of
ˆt(1/4). To compare across a range of ⌧⇤, we selected
the ⌧̃

i,t

to be independent and identically distributed ac-
cording to the maximum-entropy distribution supported on
{0, 1, . . . , 200} consistent with a particular assignment of
⌧⇤. The resulting estimates are plotted as the blue series
in Figure 4. The red line represents the mixing time that
would be predicted by naively applying Equation 2 using
the estimate of the sequential mixing time as a starting
point — we can see that it is a very good match for the ex-
perimental results. This experiment shows that, at least for
one archetypal model, our theory accurately characterizes
the behavior of HOGWILD! Gibbs sampling as the delay
parameter ⌧⇤ is changed, and that using HOGWILD!-Gibbs
doesn’t cause the model to catastrophically fail to mix.

Of course, in order for HOGWILD!-Gibbs to be useful, it
must also speed up the execution of Gibbs sampling on
some practical models. It is already known that this is the
case, as these types of algorithms been widely implemented
in practice (Smola & Narayanamurthy, 2010; Smyth et al.,
2009). To further test this, we ran HOGWILD!-Gibbs sam-
pling on a real-world 11 GB Knowledge Base Population
dataset (derived from the TAC-KBP challenge) using a ma-
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Figure 5. Speedup of HOGWILD! and multi-model Gibbs sam-
pling on large KBP dataset (11 GB).

chine with a single-socket, 18-core Xeon E7-8890 CPU
and 1 TB RAM. As a comparison, we also ran a “multi-
model” Gibbs sampler: this consists of multiple threads
with a single execution of Gibbs sampling running inde-
pendently in each thread. This sampler will produce the
same number of samples as HOGWILD!-Gibbs, but will re-
quire more memory to store multiple copies of the model.

Figure 5 reports the speedup, in terms of wall-clock time,
achieved by HOGWILD!-Gibbs on this dataset. On this ma-
chine, we get speedups of up to 2.8⇥, although the program
becomes memory-bandwidth bound at around 8 threads,
and we see no significant speedup beyond this. With any
number of workers, the run time of HOGWILD!-Gibbs is
close to that of multi-model Gibbs, which illustrates that
the additional cache contention caused by the HOGWILD!
updates has little effect on the algorithm’s performance.

7. Conclusion
We analyzed HOGWILD!-Gibbs sampling, a heuristic for
parallelized MCMC sampling, on discrete-valued graphi-
cal models. First, we constructed a statistical model for
HOGWILD!-Gibbs by adapting a model already used for
the analysis of asynchronous SGD. Next, we illustrated a
major issue with HOGWILD!-Gibbs sampling: that it pro-
duces biased samples. To address this, we proved that if for
some class of models with bounded total influence, only
O(n) sequential Gibbs samples are necessary to produce
good marginal estimates, then HOGWILD!-Gibbs sampling
produces equally good estimates after only O(1) additional
steps. Additionally, for models that satisfy Dobrushin’s
condition (↵ < 1), we proved mixing time bounds for se-
quential and asynchronous Gibbs sampling that differ by
only a factor of 1 + O(n�1

). Finally, we showed that our
theory matches experimental results, and that HOGWILD!-
Gibbs produces speedups up to 2.8⇥ on a real dataset.

64 

expected staleness parameter (   ) ⌧



Conclusion 

•  Analyzed and modeled asynchronous Gibbs 
sampling, and identified two success metrics 
–  sample bias à how close to target distribution? 
– mixing time à how long do we need to run? 

•  Showed that asynchronicity can cause problems 

•  Proved bounds on the effect of  asynchronicity 
–  using the new sparse variation distance, together with 
–  the classical condition of  total influence 
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