
EigenBench: A Simple Exploration Tool for

Orthogonal TM Characteristics

IISWC’10, 2010-Dec-02

Pervasive Parallelism Laboratory, Stanford University

Sungpack Hong
Tayo Oguntebi
Jared Casper

Nathan Bronson
Christos Kozyrakis

Kunle Olukotun

Outline

� Yet Another Benchmark for TM?

� Orthogonal Characteristics

� EigenBench

� Orthogonal Analysis

IISWC’10, 2010-Dec-02

� Application Behavior

TM Benchmarks

� Transactional Memory (TM)

� Significant number of TM proposals

: Hardware TM, Software TM, Hybrid TM …

� How do we evaluate them?

� Conventional TM Benchmarks

IISWC’10, 2010-Dec-02

� Conventional TM Benchmarks

� Application benchmark (STAMP, …) [Cao Minh et al, IISWC’08]

� Realistic

� Synthetic benchmarks (STMBench7, …) [Guerraoui et al,
Eurosys’07]

� Easy to configure and parametrize.

� Do they reflect realistic application behavior?

(e.g.) SwissTM outperformed TL2 2x~5x in synthetic
bench, but only 20~90% in STAMPs. [Dragojevic et al, PLDI’09]

why new bench

Conventional Synthetic
Benchmarks

� Synthetic Benchmarks (cont’d)

� Typically based on shared data-structure access
(e.g. red-black tree)

� Degree of freedom for exploration?

(Example)

IISWC’10, 2010-Dec-02

(Example)

L% lookups,
U% updates

L% lookups,
U% updates

L2 %lookups,
U2% updates

Conflicts? or Number of writes?

why new bench

Transaction Length? Conflicts?

Knobs Wanted

� Want to observe each TM characteristics, separately

� …. But what are the TM characteristics?

� People mean different things with one term.

ex> “Large Transactions”

IISWC’10, 2010-Dec-02

ex> “Large Transactions”

� Many TX reads & writes? (STM barrier overhead)

� Many different addresses? (HTM overflow)

� Many (non-tm) instructions inside TX? (rollback
overhead)

� We propose eight orthogonal TM characteristics.

characteristics

Address

TM Characteristics (1/2)

� Translation Length

� Number of Transactional read,write

� Pollution (0.0 ~ 1.0)

� (WR) / (RD + WR)

� Locality (0.0 ~ 1.0)

R R W

IISWC’10, 2010-Dec-02 characteristics

� Locality (0.0 ~ 1.0)

� Prob {Repeated Address in transaction}

� Working-Set Size

� Size of memory address region frequently
used in application

TM Characteristics (2/2)

� Contention (0.0 ~ 1.0)

� Prob {Conflict of a transaction}

� Concurrency

� Number of concurrent threads

� Predominance (0.0 ~ 1.0)
Program Program

End

Non-transactional
instructions in TX

Instructions outside
TX

IISWC’10, 2010-Dec-02

� Predominance (0.0 ~ 1.0)

� Fraction of transactional access

� / (+ +)

� Density (0.0 ~ 1.0)

� Fraction of non-tm instr in TX

(complementary)

� / (+)

Program
Begin End

Transactional
read/write

R R W

TX_Begin TX_End

characteristics

How do characteristics
affect performance?

HTM STM

Tx Length Overflow TX-Barrier overhead

Pollution Overflow ;

conflict detection

Write-buffer manage;

conflict detection

Locality Overflow Write-buffer searching

IISWC’10, 2010-Dec-02

Locality Overflow Write-buffer searching

Working-Set
Size

Conflict detection; cache miss latency

Conflict Conflict detection

Concurrency Scalability

Density Cost of re-execution

Predom. TM impact on overall performance

(*) Write-set size = (TX Length) * (Pollution) * (1 - Locality)

characteristics

Thread # 1
AHot Array Mild Array Cold Array

EigenBench

� How to explore each characteristic one by one?

� EigenBench – a simple exploration tool

R2 + W2

IISWC’10, 2010-Dec-02 EigenBench

R1 + W1

Thread # N

R2 + W2

R1 + W1

R3i + W3i R3o + W3o

EigenBench (Cont’d)

� Implementation is very simple (randomized
memory accesses)

� EigenBench can induce each TM characteristic
orthogonally.

IISWC’10, 2010-Dec-02 EigenBench

Detailed explanation available in the paper

Orthogonal Analysis: How-to

� Our approach

� Start from a typical transaction; explore each
characteristic.

� Non-conflicting transactions � overhead

� Conflicting transactions � detection precision

IISWC’10, 2010-Dec-02

� Conflicting transactions � detection precision

� Example Analysis

� TL2 vs. SwissTM

� Default Transaction;

Length:100, Pollution:0.1,

Conflict: 0.0, Working-set:256kB (per thread),

Locality:0.0, Predom:1.0,

Density:1.0, Concurrency: 8

Analysis

Orthogonal Analysis:
Results(1)

5

6

7

8
Speedup (8 thread)

Transaction Length

TM overhead

Unprotected:
Performance Upper-
bound (No TM protection)

5

6

7

8
Speedup (8 thread)

Pollution

IISWC’10, 2010-Dec-02

0

1

2

3

4

5

0 100 200 300 400 500

Unprotected SwissTM TL2

Very short or long transactions

0

1

2

3

4

5

0 20 40 60 80 100

(%)

Fast Performance drop (p.s. both
performance eventually drops)

Write-only TXs

Analysis

Orthogonal Analysis:
Results(2)

5

6

7

8
Speedup (8 thread)

Working-Set Size

Cache Effect (Last-Level
Cache Overflow)

IISWC’10, 2010-Dec-02 Analysis

0

1

2

3

4

1 10 100 1000 10000 100000 1000000

 (KB/thread)

Unprotected SwissTM TL2

SwissTM suffers more from
cache pressure

Orthogonal Analysis:
Results(3)

5

6

7

8
Speedup (8 thread)

0.6

0.8

1
Measured Rate of TX Rollback

Conflicts Unprotected SwissTM TL2

Upper-bound ~
Unprotected x

Cache-Line Migration Effect

More rollbacks, but better performance

IISWC’10, 2010-Dec-02 Analysis

0

1

2

3

4

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

0.2

0.4

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Estimated Conflicts

Estimated Conflicts

Unprotected x
(1- conflicts)

High conflicting region (But are we interested?)

Pathology Generation

� TM Pathology [Bobba et al, ISCA 2007]

� memory access patterns causing low performance

� Can we generate pathologies from EigenBench? Yes

Friendly Fire (Eager) Starving Elder (Lazy)

Short TXs

IISWC’10, 2010-Dec-02 Application

TX trace via timestamp

Two TXs
violating
each
other

TX trace via timestamp

Short TXs
preventing
long TX’s
progress

Application Characteristics

� Questions

� What are TM characteristics of real applications?

� Can we explain application performance via TM
characteristics?

� Example Study: STAMP applications mimicry

IISWC’10, 2010-Dec-02

� To demonstrate relationship between characteristics
and application performance

� Instrumentation/Profiling � statistics for TM
characterisitcs � Replay with EigenBench

Application

STAMP Application (1)

� Observations

� Different distributions of characteristics

� Single average may not be enough � Mix of discrete
characteristics.

Genome

IISWC’10, 2010-Dec-02 Application

TX Length

Long-tailed
distribution

STAMP Application (2)

Vacation (Low)

IISWC’10, 2010-Dec-02 Application

TX Length Working Set

Normal distribution
Wide memory

access

STAMP Application (3)

Long TX
Low Density

IISWC’10, 2010-Dec-02

Short TX
Large

Working-Set

Short TX
High Conflicts

EigenBench Use-cases

� How to use EigenBench?

1. Orthogonal Analysis

: Length, Working-Set, Pollution, Conflicts,
Concurrency, (locality, density, predom)

� Non-conflicting

IISWC’10, 2010-Dec-02

� Non-conflicting

� Conflicting

2. Explain application behavior

3. (Optional) Check if it can survive pathologies.

Summary

� Orthogonal TM Characteristics

� EigenBench

� Orthogonal Analysis

� Application Performance Explanation

IISWC’10, 2010-Dec-02

� Subsidiary Lessons for STM designers

� Cache effect should be considered

� Trade-off barrier overhead vs. conflict resolution

� Restart penalty can be small

� Download: http://ppl.stanford.edu/eigenbench

� E-mail: eigenbench_manager@lists.stanford.edu

