
Scalable Interconnects for Reconfigurable Spatial Architectures
Yaqi Zhang

yaqiz@stanford.edu
Stanford University

Stanford, CA

Alexander Rucker
acrucker@stanford.edu
Stanford University

Stanford, CA

Matthew Vilim
mvilim@stanford.edu
Stanford University

Stanford, CA

Raghu Prabhakar
raghup17@stanford.edu
Stanford University

Stanford, CA

William Hwang
williamhwang@stanford.edu

Stanford University
Stanford, CA

Kunle Olukotun
kunle@stanford.edu
Stanford University

Stanford, CA

ABSTRACT
Recent years have seen the increased adoption of Coarse-Grained
Recon�gurable Architectures (CGRAs) as �exible, energy-e�cient
compute accelerators. Obtaining performance using spatial archi-
tectures while supporting diverse applications requires a �exible,
high-bandwidth interconnect. Because modern CGRAs support
vector units with wide datapaths, designing an interconnect that
balances dynamism, communication granularity, and programma-
bility is a challenging task.

In this work, we explore the space of spatial architecture inter-
connect dynamism, granularity, and programmability. We start by
characterizing several benchmarks’ communication patterns and
showing links’ imbalanced bandwidth requirements, fanout, and
data width. We then describe a compiler stack that maps applica-
tions to both static and dynamic networks and performs virtual
channel allocation to guarantee deadlock freedom. Finally, using a
cycle-accurate simulator and 28 nm ASIC synthesis, we perform a
detailed performance, area, and power evaluation across the identi-
�ed design space for a variety of benchmarks. We show that the best
network design depends on both applications and the underlying
accelerator architecture. Network performance correlates strongly
with bandwidth for streaming accelerators, and scaling raw band-
width is more area- and energy-e�cient with a static network.
We show that the application mapping can be optimized to move
less data by using a dynamic network as a fallback from a high-
bandwidth static network. This static-dynamic hybrid network
provides a 1.8x energy-e�ciency and 2.8x performance advantage
over the purely static and purely dynamic networks, respectively.

CCS CONCEPTS
• Computer systems organization → Interconnection archi-
tectures; • Hardware → Hardware accelerators.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
ISCA ’19, June 22–26, 2019, Phoenix, AZ
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

KEYWORDS
interconnection network, recon�gurable architectures, hardware
accelerators, CGRAs

ACM Reference Format:
Yaqi Zhang, Alexander Rucker, Matthew Vilim, Raghu Prabhakar, William
Hwang, and Kunle Olukotun. 2019. Scalable Interconnects for Recon�g-
urable Spatial Architectures. In ISCA ’19: The 46th International Symposium
on Computer Architecture, June 22–26, 2019, 2019, Phoenix, AZ. ACM, New
York, NY, USA, 14 pages.

1 INTRODUCTION
Spatially recon�gurable architectures are programmable, energy
e�cient application accelerators o�ering the �exibility of soft-
ware and the e�ciency of hardware. Architectures such as Field
Programmable Gate Arrays (FPGAs) achieve energy e�ciency by
providing statically recon�gurable compute elements and on-chip
memories in a bit-level programmable interconnect; this intercon-
nect can be con�gured to implement arbitrary datapaths. FPGAs
are used to deploy services commercially [20, 41, 48] and can be
rented on the AWS F1 cloud [2]. However, FPGAs su�er from over-
head incurred by �ne-grained recon�gurability; their long compile
times and relatively low compute density have hampered wide-
spread adoption for several years [5, 7, 33, 45]. Therefore, recent spa-
tial architectures use increasingly coarse-grained building blocks,
such as ALUs, register �les, and memory controllers, distributed in
a programmable, word-level static interconnect. Several of these
Coarse-Grained Recon�gurable Arrays (CGRAs) have recently been
proposed [14, 17, 18, 27, 32, 34, 35, 43, 46].

Applications are mapped to CGRAs by distributing computations
spatially across multiple processing blocks and executing them in
a pipelined, data-driven fashion. On traditional Networks on Chip
(NoCs), communication is the result of explicit message passing by
parallel workers or cache misses; these are bursty and relatively
infrequent. On CGRAs, however, applications are distributed by
parallelizing and pipelining; pipelining introduces frequent and
throughput-sensitive communication. Because di�erent applica-
tions are parallelized and pipelined di�erently, they have di�erent
communication requirements.

CGRAs need the right amount of interconnect �exibility to
achieve high resource utilization; an in�exible interconnect con-
strains the space of valid applicationmappings and hinders resource
utilization. Furthermore, in the quest to increase compute density,

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Y. Zhang and A. Rucker, et al.

Compute
PB

Memory
PB

Compute
PB

Compute
PB

Memory
PB

Compute
PB

Compute
PB

Memory
PB

Compute
PB

DRAM
PB

DRAM
PB

DRAM
PB

DRAM
PB

DRAM
PB

DRAM
PB

SIMD Compute

Pipeline

Input Buffers

Time-Scheduled Execution

Pipelined
CGRA

Time
Scheduled

CGRA

Figure 1: Abstract machine model of our target CGRA, with
compute, memory, and DRAM Physical Blocks (PBs).

CGRA data paths now contain increasingly coarse-grained process-
ing blocks such as pipelined, vectorized functional units [17, 39, 46].
These data paths typically have a vector width of 8–16x [46], which
necessitates coarser communication and higher on-chip intercon-
nect bandwidth to avoid creating performance bottlenecks. Al-
though many hardware accelerators with large, vectorized data
paths have �xed local networks [13], there is a need for more �exi-
ble global networks to adapt to future applications. Consequently,
interconnect design for these CGRAs involves achieving a balance
between the often con�icting requirements of high bandwidth and
high �exibility.

Interconnects can be classi�ed into two broad categories: static
and dynamic. Static interconnects use switches programmed at com-
pile time to reserve high-bandwidth links between communicating
units for the lifetime of the application. CGRAs traditionally em-
ploy static interconnects [9, 55]. In contrast, dynamic interconnects,
or NoCs, contain routers that allow links to be shared between
more than one pair of communicating units. NoC communication
is typically packet-switched, and routers use allocators to fairly
share links between multiple competing packets. Although static
networks are fast, they require over-provisioning bandwidth and
can be underutilized when a dedicated static link is reserved for a
logical link that is not 100% active. While dynamic networks allow
link sharing, the area and energy cost to transmit one bit of data
is higher for routers than for switches, making bandwidth scaling
more expensive in dynamic networks than in static networks.

In this paper, we start by detailing the key considerations in-
volved in building a CGRA network, including those arising from
network design, CGRA architecture, and the characteristics of spa-
tially mapped applications. Network designs must be carefully con-
sidered because vectorization magni�es ine�ciencies: the increased
network area of a vectorized design ensures that any overhead has
a signi�cant impact. Next, we evaluate the performance, area, and
power requirements of several interconnection designs using cycle-
accurate simulation and ASIC synthesis of a switch and router with
a 28 nm industrial technology library. We then explore a variety
of design points, including static, dynamic, and hybrid networks,
decreased �it widths and VC counts for dynamic networks, and
di�erent �ow-control strategies for static networks.

We show that CGRA network designs must consider application
characteristics and the execution model of the underlying architec-
ture. Performance scales strongly with network bandwidth, with an

8x average performance gap between the best and worst con�gura-
tions. The hybrid network gives the best network energy-e�ciency:
a 1.83x average improvement over the static network. On pipelined
architectures, hybrid networks can also match the performance per
area of higher bandwidth, purely static networks with less than 8%
performance loss.

The key contributions of this paper are:
(1) An analysis of key communication patterns exhibited by

spatial architectures.
(2) A network-aware compiler �ow that e�ciently targets static,

dynamic, and hybrid networks with varying granularities.
(3) A quantitative analysis of the performance, area, and en-

ergy trade-o�s involved in choosing a CGRA network, using
benchmarks drawn from various application domains.

The rest of the paper is organized as follows: Section 2 provides
background on the communication patterns that motivate intercon-
nect design and describes the network design space explored in this
paper. Section 3 describes our compiler �ow for a vectorized CGRA,
including how we physically map applications. Section 4 details
our evaluation methodology and experimental results. Section 5
discusses related work, and Section 6 o�ers concluding remarks.

2 BACKGROUND
This section discusses communication characteristics common in
applications that have been spatially mapped to CGRAs. Because
CGRAs encompass a broad range of architectures, we �rst describe
the abstract machine model of our target CGRA for this study,
shown in Figure 1. The CGRA contains Physical Blocks (PBs) cor-
responding to distributed hardware resources, including compute
units, scratchpads, and DRAM controllers. The communication be-
tween PBs, sent over a recon�gurable network, is purely streaming.
Compute PBs have a simple control mechanism: they wait on input
data dependencies and stall for backpressure from the network.
The network guarantees exactly-once, in-order delivery with vari-
able latency, and communication between PBs can have varying
granularities (e.g., 512-bit vector or 32-bit scalar).

In this study, we focus on two categories of CGRA architec-
tures. The �rst architecture uses pipelining in compute PBs, as
shown in Figure 1. To provide high throughput, each stage of the
pipeline exploits SIMD parallelism, and multiple SIMD operations
are pipelined within a PB. Plasticine, a recently proposed CGRA, is
an example of a pipelined architecture [46].

The second architecture uses time-scheduled execution, where
each PB executes a small loop of instructions (e.g., 6) repeatedly.
The scheduling window is small enough that instructions are stored
as part of the con�guration fabric, without dynamic instruction
fetch overhead. This execution model creates more interleaved
pipelining across PBs with communication that is tolerant of lower
network throughput, which provides an opportunity to share links.
Many proposed CGRAs and domain-speci�c architectures use this
time-scheduled form of computation, including Brainwave [13] and
DaDianNao [8].

2.1 Application Characteristics
The requirements of an interconnection network are a function of
the communication pattern of the application, underlying CGRA

Scalable Interconnects for Reconfigurable Spatial Architectures ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

architecture, and compilation process. We identify the following
key characteristics of spatially mapped applications:

2.1.1 Vectorized communication. Recent hardware accelerators use
large-granularity compute tiles (e.g., vectorized compute units and
SIMD pipelines) for SIMD parallelism [39, 46], which improves
compute density while minimizing control and con�guration over-
head. Coarser-grained computation typically increases the size of
communication, but glue logic, reductions, and loops with carried
dependencies (i.e., non-parallelizable loops) contribute to scalar
communications. This variation in communication motivates spe-
cialization for optimal area- and energy-e�ciency: separate net-
works for di�erent communication granularities.

2.1.2 Broadcast and incast communication. A key optimization for
spatial recon�gurable accelerators is the parallelization of execu-
tion across PBs. This parallelization involves unrolling outer loop
nests in addition to the vectorization of the inner loop. For neural
network accelerators, this corresponds to parallelizing one layer
across di�erent channels. By default, pipeline parallelism involves
one-to-one communication between dependent stages. However,
when a consumer stage is parallelized, the producer sends a one-to-
many broadcast to all of its consumers. Similarly, when a producer
stage is parallelized, all partial results are sent to the consumer,
forming a many-to-one incast link. When both the producer and
the consumer are parallelized, the worst case is many-to-many com-
munication, because the parallelized producers may dynamically
alternate between parallelized receivers.

2.1.3 Compute to memory communication. To encourage better
sharing of on-chip memory capacity, many accelerators have shared
scratchpads, either distributed throughout the chip or on its periph-
ery [13, 40, 46]. Because the compute unit has no local memory
to bu�er temporary results, the results of all computations are
sent to memory through the network. This di�ers from the NoCs
used in multi-processors, where each core has a local cache to
bu�er intermediate results. Studies have shown that for large-scale
multi-processor systems, network latency—not throughput—is the
primary performance limiter [49]. For spatial accelerators, how-
ever, compute performance is limited by network throughput, and
latency is comparatively less important.

2.1.4 Communication-aware compilation. Unlike the dynamic com-
munication of multi-processors, communication on spatial archi-
tectures is created statically by compiling and mapping the com-
pute graph onto the distributed PB resources. As the compiler per-
forms optimization passes, such as unrolling and banking, it has
static knowledge about communication generated by these trans-
formations. This knowledge allows the compiler to accurately de-
termine which network �ows in the transformed design correspond
to throughput-critical inner-loop tra�c and which correspond to
low-bandwidth outer-loop tra�c.

2.2 Design Space for Network Architectures
We start with several statically allocated network designs, where
each SIMD pipeline connects to several switches, and vary �ow
control strategies and network bisection bandwidth. In these de-
signs, each switch output connects to exactly one switch input for

the duration of the program. We then explore a dynamic network,
which sends program data as packets through a NoC. The NoC uses
a table-based routing scheme at each router to allow for arbitrary
routes and tree-based broadcast routing. Finally, we explore the
bene�ts of specialization by evaluating design points that combine
several of these networks to leverage the best features of each.

2.2.1 Static networks. We explore static network design points
along three axes. First, we study the impact of �ow-control schemes
in static switches. In credit-based �ow control [58], the source and
destination PBs coordinate to ensure that the destination bu�er
does not over�ow. For this design point, switches only have a
single register at each input, and there is no backpressure between
switches. The alternate design point uses a skid-bu�ered queue
with two entries at each switch; using two entries enables per-hop
backpressure and accounts for a one-cycle delay in stalling the
upstream switch. At full throughput, the receiver will consume
data as it is sent and no queue will ever �ll up. The second axis
studied is the bandwidth, and therefore routability, of the static
network. We vary the number of connections between switches
in each direction, which trades o� area and energy for bandwidth.
Finally, we explore specializing static links: using a separate scalar
network to improve routability at a low cost.

2.2.2 Dynamic networks. Our primary alternate design is a dy-
namic NoC using per-hop virtual channel �ow control. Routing and
Virtual Channel (VC) assignment are table-based: the compiler per-
forms static routing and VC allocation, and results are loaded as a
part of the routers’ con�gurations at runtime. The router has a sepa-
rable, input-�rst VC and switch allocator with a single iteration and
speculative switch allocation [10]. Input bu�ers are sized just large
enough (3 entries) to avoid credit stalls at full throughput. Broad-
casts are handled in the network with duplication occurring at the
last router possible to minimize energy and congestion. To respect
the switch allocator’s constraints, each router sends broadcasts to
output ports sequentially and in a �xed order. This is because the
switch allocator can only grant one output port per input port in
every cycle, and the RTL router’s allocator does not have su�cient
timing slack to add additional functionality. We also explore di�er-
ent �it widths on the dynamic network, with a smaller bus taking
multiple cycles to transmit a packet.

Because CGRA networks are streaming—each PB pushes the re-
sult to the next PB(s) without explicit request—the network cannot
handle routing schemes that may drop packets; otherwise, appli-
cation data would be lost. Because packet ordering corresponds
directly to control �ow, it is also imperative that all packets arrive in
the order they were sent; this further eliminates adaptive or obliv-
ious routing from consideration. We limit our study of dynamic
networks to statically placed and routed source routing due to these
architectural constraints. PBs propagate backpressure signals from
their outputs to their inputs, so they must be considered as part of
the network graph for deadlock purposes [21]. Furthermore, each
PB has �xed-size input bu�ers; these are far too small to perform
high-throughput, end-to-end credit-based �ow control in the dy-
namic network for the entire program [58]. Practically, this means
that no two logical paths may be allowed to con�ict at any point in
the network; to meet this guarantee, VC allocation is performed to

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Y. Zhang and A. Rucker, et al.

1 // Host to accelerator register for scalar input with
2 // user annotated value
3 val N = ArgIn[Int]; bound(N) = 1024
4 // 1-D DRAM size in N
5 val vecA, vecB = DRAM[T](N)
6 // 2-D DRAM size in NxN
7 val matC = DRAM[T](N, N)
8 // Loop unrolling factors
9 val op1, op2, ip:Int = ...
10 // Blocking sizes of vecA and vecB
11 val tsA, tsB:Int = ...
12
13 // Accelerator kernel
14 C0: Accel {
15 // C1 is parallelized by op1
16 C1: Foreach(min=0, step=tsA, max=N, par=op1){ i =>
17 // Allocate 1-D scratchpad size in tsA
18 val tileA = SRAM[T](tsA)
19 // Load range i to i+tsA of vectorA from off- to
20 // on-chip parallelized by ip
21 C2: tileA load vecA(i::i+tsA par ip)
22 C3: Foreach(min=0, step=tsB, max=N, par=op2) { j =>
23 val tileB = SRAM[T](tsB)
24 C4: tileB load vecB(j::j+tsB par ip)
25 // 2-D scratchpad
26 val tileC = SRAM[T](tsA, tsB)
27 C5: Foreach(min=0, step=1, max=tsA){ ii =>
28 Foreach(min=0, step=1, max=tsB, par=ip) { jj =>
29 tileC(ii, jj) = tileA(ii) * tileB(jj)
30 }
31 }
32 // Store partial results to DRAM
33 C6: matC(i::i+tsA, j::j+tsB par ip) store tileC
34 }
35 }
36 }

Figure 2: Example of outer product in Spatial pseudocode.

ensure that all logical paths traversing the same physical link are
placed into separate bu�ers.

2.2.3 Hybrid networks. Finally, we explore hybrids between static
and dynamic networks that run each network in parallel. During
static place and route, the highest-bandwidth logical links from the
program graph are mapped onto the static network; once the static
network is full, further links are mapped to the dynamic network.
By using compiler knowledge to identify the relative importance of
links—the link fanout and activation factor—hybrid networks can
sustain the throughput requirement of most high-activation links
while using the dynamic network for low-activation links.

2.3 High-Level Abstraction
We use Spatial, an open source domain speci�c language for recon-
�gurable accelerators, to target spatial architectures [30]. Spatial
describes applications with nested loops and an explicit memory
hierarchy that captures data movement on-chip and o�-chip. This
exposes design parameters that are essential for achieving high
performance on spatial architectures, including blocking size, loop
unrolling factors, inner-loop pipelining, and coarse-grained pipelin-
ing of arbitrarily nested loops. To enable loop-level parallelization
and pipelining, Spatial automatically banks and bu�ers intermediate
memories between loops. An example of outer product—element-
wise multiplication of two vectors resulting in a matrix—in Spatial
is shown in Figure 2. For spatial architectures, Design Space Explo-
ration (DSE) of parameters (e.g., op1, op2, ip, tsA, tsB) is critical to
achieve good resource utilization and performance [31].

Register

FIFO

SRAM

Controller

Scalar Data

Controller
Hierarchy

Memory	VB

Compute	VB

DRAM

Interface	VB

Dram	Address

Generator	VB

Host	VB

Scalar	Data

V

C0

C1

C2-1 C2-2

C5

tileB

C3

C4-1 C4-2

C2

C4

C6-2C6-1

tileA

tileC

C6

C0-1

C6

C3 C3

C1 C1

C0 C0

C3

C1

C0

C4

C1

C3

C0

C1

C2

C1

C0C0

C4

C4-2 C5

C2-2

C2

C5

C3

C5 C6-2

C6

C0

N

N
N

(a)	Hierarchical	dataflow	graph	representing	communication	with	nested

controllers.	Using	annotated	input	sizes,	our	compiler	derives	the	activation

counts	of	loop	nests	and	logical	links.	(iter:	iteration	of	a	loop.	activation:

total	number	of	iterations	the	controller	will	be	active)

(b)	VB	Allocation.	Controllers	are	duplicated	and	distributed	to	VBs.	

Controller	signals	are	used	to	enqueue/dequeue	inputs/outputs;	the

compiler	eliminates	duplicated	controllers	whose	output	signals	are

not	used.

(c)	VB	dataflow	graph.	This	program	graph	will	be	placed	and

routed	on	the	global	network.

C1

C2-1 C2-2

C5

tileB

C3

C4-1 C4-2

C2

C4

C6-2C6-1

tileA

tileC

C6

C0-1 N

C0 iter=1

iter=1 iter=	
N/(tsA	x	op1)

iter=	N/(tsB	x	op2)

iter=1

iter=
tsB/ip

iter=
tsB	/	ip

iter=
tsA/ip

iter=
tsA/ip

iter=
(tsA)(tsB/ip)

iter=
(tsA)(tsB/ip)

iter=1

iter=1

VB-A VB-B VB-C VB-D VB-E VB-F VB-G VB-H

VB-I

VB-J

VB-K

VB-A

VB-B

VB-D

VB-C

VB-E

VB-I

VB-J

VB-F

VB-K VB-H

VB-G

C CEliminated	

Controllers

Vector	Data

Vector Data

C4-1,	C4-2:
activation=
N^2/(tsA	x	op1	x	op2
x	ip)

C2-1,	C2-2:	
activation=
N/(op1xip)

C5:	activation=
N^2/(op1	x	op2	x
ip^2)

iter=	
(tsA/ip)(tsB/ip)

C6-1,	C6-2:
activation=
N^2/(op1	x	op2	x
ip)

fifo1

Controllers

Figure 3: Target speci�c compilation: the hierarchical con-
trol graph is transformed into a distributed data�ow graph
for the outer product example shown in Figure 2 .

3 METHODOLOGY
3.1 Compilation
Figure 4 shows the overall compilation and mapping process. We
start by taking the Intermediate Representation (IR) output by the
Spatial compiler and lowering it into a target-speci�c IR, which
is a distributed data �ow graph consisting of Virtual Blocks (VBs).
A single VB corresponds to an arbitrarily-sized computation or
memory block, and edges between VBs capture data dependencies
that are routed across the global network. Next, the VB graph is
mapped onto a PB graph that describes the underlying architectural

Scalable Interconnects for Reconfigurable Spatial Architectures ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

Spatial
-	Banking	+	Buffering

-	Loop	Unrolling

-	VB	Allocation

-	VB	Partitioning

Mapping

Low-Level IR

-	Place	and	Route

-	VC	Allocation

Simulation

Nested	loops	with	explicit	memory	hierarchy	

Flat	dataflow	graph	with	duplicated	controllers

Cycle	accurate	simulator
Integrated	with	DRAMSim	and	Booksim
Energy	estimation	using	simulated	activity

Mapping	of	application	PBs	onto	VBs

Figure 4: Compilation and mapping �ow.

constraints, such as scratchpad sizes and pipeline depths (Figure 1).
Finally, the mapped VB graph is placed and routed onto the physical
array and associated network.

3.1.1 Virtual block allocation. The �rst compilation step is convert-
ing nested loop constructs into a distributed, streaming VB data�ow
graph. Figure 3(a) shows the input to our compiler: the hierarchical
controller-based representation of the Spatial program shown in
Figure 2. For simplicity, the graph shown in the diagram is not
unrolled. We allocate one VB per program basic block and extract
SIMD parallelism by vectorizing the inner loop within a single VB.
This vectorization corresponds to the inner loop parallelization
expressed in the program. Parallelization at arbitrary loop levels
(beyond SIMD parallelism) is achieved by loop unrolling, where a
single basic block is duplicated and mapped to multiple VBs.

To convert from the hierarchical model to a streaming data�ow
graph, we duplicate and distribute nested loop controllers for each
VB, as shown in Figure 3(b). The distributed controllers are used
to match communication between VBs without the need to send
explicit control information. Because the same parent controller
is duplicated at both ends of a link, the receiver knows exactly
how much data to expect. Instead of requiring an explicit control
signal, the receiver can simply count the number of input packets
received. The output of this step is the VB data�ow graph shown
in Figure 3(c), where edges indicate single-bit, scalar, or vector data
dependencies between VBs; these links are then mapped to the
network.

3.1.2 Resource pruning and VB partitioning. Software can contain
arbitrarily large basic blocks that do not �t in �xed-size hardware.
For a given hardware speci�cation, our compiler partitions a VB
whenever its compute resources, on-chip memory capacity, or net-
work bandwidth exceed hardware constraints. For example, compu-
tation partitioning occurs for basic blocks longer than the number
of stages in a pipelined architecture or the scheduling window of a
time-scheduled architecture.

Partitioning can also result from scratchpad bandwidth and ca-
pacity constraints. During parallelization, the on-chip memory used
by parallelized readers and writers to communicate must be banked
to provide the necessary bandwidth. When a memory VB has more
banks than a memory PB, we use multiple PBs to map that logical
memory and support higher access bandwidth. A similar process is
used for memory VBs that exceed hardware capacity.

Finally, our compiler partitions VBs to keep the in- and out-
degrees of nodes manageable. When a VB in a pipelined CGRA
consumes too many inputs or produces too many distinct outputs,
we partition it to reduce its degree and meet the input/output band-
width constraints of a purely static network. For dynamic and hy-
brid networks, partitioning is not strictly necessary, but it improves
performance by decreasing congestion at the network ejection port
associated with a PB. We do not partition broadcasts with high out-
put degrees because they are handled natively within the network.

We use a bipartite graph between VBs and PBs to indicate valid
matches between the two, where an edge between a VB and PB
suggests a valid mapping. With this representation, we support
reusing specialized PBs (e.g., address generators) for general pur-
pose VBs, instead of forcing a one-to-one mapping between VBs
and PB types. Initially, all VBs and PBs are connected, forming a
complete bipartite graph; we then remove edges between VBs and
PBs that violate a resource constraint. After pruning, we recursively
partition any VB with no valid PBs into multiple VBs until all VBs
match at least one PB.

3.1.3 Link analysis and heuristic generation. In Spatial, the user can
annotate runtime-variable input values to assist compiler analysis.
We use these programmer annotations to compute the expected
number of iterations for each controller statically; this heuristic
guidance helps the placer evenly distribute tra�c. However, we
do not require exact annotations for e�cient placement—a rough
estimate of data size is su�cient for the placer to determine the
relative importance of links. For loop controllers, the number of
iterations per parent iteration is d(max �min)/(step · par)e; con-
trollers representing glue logic run once per parent iteration. The
activation count of a link will be the product of all of its ancestral
controllers’ iteration counts.

Using the computed activation counts, the placer prioritizes
highly used links for allocation to the static network and leaves
infrequently used links on the dynamic network. When no anno-
tation is provided, or loop bounds cannot be constant-propagated,
the compiler estimates loop iteration counts based on the nesting
depth: innermost loops are the most frequently active. This heuris-
tic provides a reasonable estimate of links’ priorities for routing
purposes.

3.2 Placement and Routing
For purely static networks, the goal is primarily to �nd a valid
placement—because static routes have guaranteed resources re-
served, no two routes can con�ict, and any placement found is
essentially optimal. Some routes may have longer latency, which
has a second-order performance impact compared to throughput.
However, determining a purely static allocation of routes cannot be
done in polynomial time and may be infeasible; therefore, the static
network must be over-provisioned to aid placement. Although vir-
tually all placements are valid for the dynamic and hybrid networks,
not all valid placements are equal—some have less congestion and
therefore run several times faster.

Dynamic network placement is performed with an iterative al-
gorithm using heuristics to rapidly evaluate placements: a penalty
score is assigned as a linear function of several subscores. These in-
clude projected congestion on dynamic links, projected congestion

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Y. Zhang and A. Rucker, et al.

at network injection and ejection ports, the average route length,
and the length of the longest route. We estimate congestion by
normalizing the number of packets on each link to the program link
with the highest total packet count. The most active program link
sets a lower bound on the program runtime (the highest bandwidth
physical link can still only send one packet per cycle), which trans-
lates to an upper bound on congestion for other links. We start with
random placement of the VBs. Then, a genetic algorithm shu�es
the VBs whose links contribute most to congestion, and keeps the
new position if it improves the route assignment. By iteratively re-
placing and re-routing, the mapping process eventually converges
to a good placement.

3.2.1 Congestion-aware routing. To achieve optimal performance,
we use a routing algorithm that detects congestion and routes
around it. Routing starts with the highest-priority routes, as deter-
mined by fanout and activation count, which are �xed after they
are routed. This makes sure that the static network is used most
e�ciently. Our scheme searches a large space of routes for each
link, using Dijkstra’s algorithm [11] and a hop weighting function.
Routes are not analyzed on the basis of a single source-destination
pair, which would be inadequate for broadcasts: instead, a directed
graph is built from the source and all destinations in the route, with
edge weights corresponding to the minimal route between each
pair of VBs in the broadcast. For example, if the broadcast is from
VB-1 to VB-2 and VB-3, four total potential routes are analyzed for
congestion: VB-1 to VB-2, VB-1 to VB-3, VB-2 to VB-3, and VB-3 to
VB-2. The routes are weighted so that routes mapped on the static
network are preferable to those mapped to the dynamic network;
within these categories, routes are weighted based on length.

Then, a search algorithm based on Prim’s algorithm for mini-
mum spanning trees [47] is run to build a tree for the broadcast,
starting with only the source being reached. At every step, the
most-preferable route (from the graph built using Dijkstra’s algo-
rithm) that adds a new destination VB to the reached set is chosen
and added to the broadcast, until all destination VBs are reached.
This route can start from either the source of the broadcast tree
or any destination currently in the reached set. The algorithm will
�nd a fully static broadcast tree, if one exists, and will only add a
non-static route to the broadcast (moving the entire broadcast to
the dynamic network) when there are VBs in the tree that cannot
be reached from the source VB by any static route.

3.2.2 VC allocation for deadlock avoidance. Deadlock is a system
pathology in dynamic routing where multiple �its form a cyclic
holds/waits dependency on each others’ bu�ers and prevent for-
ward progress. Most data-�ow accelerators use a streaming model,
where outputs of a producer are sent over the network to one
or more consumers without an explicit request; the producer is
backpressured when there is insu�cient bu�er space. While this
paradigm improves accelerator throughout by avoiding the round-
trip delay of a request-response protocol, it introduces an additional
source of deadlock [21].

Figure 5(a) shows a sample VB data-�ow graph, which is stati-
cally placed and routed on a 2⇥3 network in (b). Logical links B and
C share a physical link in the network. If C �lls the bu�er shared
with B, VB-3 will never receive any packets from B and will not
make forward progress. With streaming computation, the program

Router

A

Router
Input Buffer

VB

Virtual
Block

Logical
Link

(a)

VB-1

VB-2

VB-3

A

B

C

VB-4

D VB-4

VB-3

VB-1

VB-2

[0,1]

[0,0] [1,0]

[1,1] [2,1]

B B,C

C

C

(b)

D

Figure 5: An example of deadlock in a streaming accelerator,
showing the (a) VB data-�ow graph and (b) physical place-
ment and routes on a 2 ⇥ 3 network. There are input bu�ers
at all router inputs, but only the bu�er of interest is shown.

graph must be considered as part of the network dependency graph,
which must be cycle-free to guarantee deadlock freedom. However,
this is infeasible because cycles can exist in a valid VB data�ow
graph when the original program has a loop-carried dependency.
Therefore, deadlock avoidance using cycle-free routing, such as
dimension-order routing, does not work in our scenario. Allocating
VCs to prevent multiple logical links from sharing the same physi-
cal bu�er is consequently the most practical option for deadlock
avoidance on streaming accelerators.

3.3 Simulation
Weuse a cycle-accurate simulator tomodel the pipeline and schedul-
ing delay for the two types of architectures, integrated with DRAM-
Sim [57] to model DRAM access latency. For static networks, we
model a distance-based delay for both credit-based and per-hop
�ow control. For dynamic networks, we integrate our simulator
with Booksim [25], adding support for arbitrary source routing
using look-up tables. Finally, to support e�cient multi-casting in
the dynamic network, we modify Booksim to duplicate broadcast
packets at the router where their paths diverge. At the divergence
point, the router sends the same �it to multiple output ports over
multiple cycles. We assume each packet carries a unique ID that is
used to look up the output port and next VC in a statically generated
routing table, and that the ID is roughly the same size as an address.
When the packet size is greater than the �it size, the transmission
of a single packet takes multiple cycles.

3.3.1 Area and power. To e�ciently evaluate large networks, we
start by characterizing the area and power consumption of individ-
ual routers and switches used in various network con�gurations.
The total area and energy are then aggregated over all switches and
routers in a particular network. We use router RTL from the Stan-
ford open source NoC router [4] and our own parameterized switch
implementation. We synthesize using Synopsys Design Compiler
with a 28 nm technology library and clock-gating enabled, meeting
timing at a 1 GHz clock frequency. Finally, we use Synopsys Prime-
Time to back-annotate RTL signal activity to the post-synthesis
switch and router designs to estimate gate-level power.

Scalable Interconnects for Reconfigurable Spatial Architectures ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

Benchmark Description Data Size

DotProduct Inner product 1048576

OuterProduct Outer product 1024

BlackScholes Option pricing 1048576

TPCHQ6 TPC-H query 6 1048576

Lattice Lattice regression [15] 1048576

GDA Gaussian discriminant analysis 127 ⇥ 1024

GEMM General matrix multiply 256 ⇥ 256 ⇥ 256

Kmeans K-means clustering k=64, dim=64, n=8192, iter=2

LogReg Logistic regression 8192 ⇥ 128, iter=4

SGD Stochastic gradient descent for a single layer neural network 16384 ⇥ 64, epoch=10

LSTM Long short term memory recurrent neural network 1 layer, 1024 hidden units, 10 time steps

GRU Gated recurrent unit recurrent neural network 1 layer, 1024 hidden units, 10 time steps

LeNet Convolutional neural network for character recognition 1 image

Table 1: Benchmark summary

We found that power consumption can be broken into two types:
inactive power consumed when switches and routers are at zero-
load (Pinactive, which includes both dynamic and static power), and
active power. The active power, as shown in Section 4.2, is pro-
portional to the amount of data transmitted. Because power scales
linearly with the amount of data movement, we model the marginal
energy to transmit a single �it of data (�it energy, E�it) by dividing
active energy by the number �its transmitted in the testbench:

E�it =
(P � Pinactive)Ttestbench

#�it
(1)

While simulating an end-to-end application, we track the number
of �its transmitted at each switch and router in the network, as
well as the number of switches and routers allocated by place and
route. We assume unallocated switches and routers are perfectly
power-gated, and do not consume energy. The total network energy
for an application on a given network (Enet) can be computed as:

Enet =
’

allocated
PinactiveTsim + E�it#�it, (2)

where Pinactive, E�it, and #�it are tabulated separately for each
network resource.

4 EVALUATION
To evaluate our compilation �ow and network architectures, we
use a set of benchmarks implemented in Spatial. We start with
Spatial’s output IR (Section 3.1), and transform it into a graph of
distributed, streaming VBs. Our compiler then performs place and
route for a target architecture before generating a con�guration for
cycle-accurate simulation. During simulation, we track the amount
of data moved by each switch and router, which we integrate with
synthesis results to produce estimates of area and power.

For each application, we �nd the highest-performing paralleliza-
tion and tiling factors; for DRAM-bound applications, this is the
con�guration that saturates memory bandwidth. The optimum
parameters for each network con�guration may vary, as high par-
allelization does not improve performance on a low bandwidth
network. We start with benchmark characterizations (Section 4.1),

analyzing application characteristics and communication patterns
to identify how they interact with networks. Next, we characterize
the area and energy of network primitives, whichwe use to calculate
the total network area and energy in Section 4.2. Finally, Section 2.2
presents a design space study over all network dimensions for both
pipelined and scheduled architectures. Table 2 summarizes the no-
tation we use to describe network con�gurations in the remainder
of this section.

4.1 Application Characterization
We select a mix of applications from domains where hardware accel-
erators have shown promising performance and energy-e�ciency
bene�ts, such as linear algebra, databases, and machine learning.
Table 1 lists the applications and their data size. Figure 6 shows, for
each design, which resource limits performance: compute, on-chip
memory, or DRAM bandwidth. DotProduct, TPCHQ6, OuterProd-
uct, and BlackScholes are DRAM bandwidth-bound applications.
These applications use few on-chip resources to achieve maximum
performance, resulting in minimal communication. Lattice (a fast in-
ference model for low-dimensional regression [15]), GDA, Kmeans,
SGD, and LogReg are compute-intensive applications; for these,
maximum performance requires using as much parallelization as
possible. Finally, LSTM, GRU, and LeNet are applications that are
limited by on-chip memory bandwidth or capacity. For compute-
and memory-intensive applications, high utilization translates to a
large interconnection network bandwidth requirement to sustain
application throughput.

Figure 7(a,b) shows the communication pattern of applications
characterized on the pipelined CGRA architecture, including the
variation in communication granularity. Compute and on-chip
memory-bound applications show a signi�cant amount of high-
bandwidth communication (links with almost 100% activity). A few
of these high-bandwidth links also exhibit high broadcast fanout.
Therefore, a network architecture must provide su�cient band-
width and e�cient broadcasts to sustain program throughput. On
the contrary, time-scheduled architectures, shown in Figure 7(c,d),
exhibit lower bandwidth requirements due to the lower throughput

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Y. Zhang and A. Rucker, et al.

Figure 6: Physical resource and bandwidth utilization for
various applications.

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

Percentage of Links

DotProduct
OuterProduct
BlackScholes

TPCHQ6
GDA

GEMM
Kmeans
LogReg

SGD
Lattice
LSTM
GRU

LeNet

V V V V V V S S S S

V V V V V V S S S S

V V V V V V V V S S

V V V V V V V S S S

V V V V V V V V V S

V V V V V V V S S S

V V V V V V V S S S

V V V V V V V S S S

V V V V V V V S S S

V V V V V V V V V S

V V V V V V V V S S

V V V V V V V V S S

V V V V S S S S S S

(a)

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

Percentage of Links

V V V V V V S S S S

V V V V V V S S S S

V V V V V V V V S S

V V V V V V V S S S

V V V V V V V V V S

V V V V V V V S S S

V V V V V V V S S S

V V V V V V V S S S

V V V V V V V S S S

V V V V V V V V V S

V V V V V V V V S S

V V V V V V V V S S

V V V V S S S S S S

(b)

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

Percentage of Links

DotProduct
OuterProduct
BlackScholes

TPCHQ6
GDA

GEMM
Kmeans
LogReg

SGD
Lattice
LSTM
GRU

LeNet

V V V V V V S S S S

V V V V V V S S S S

V V V V V V V V S S

V V V V V V V S S S

V V V V V V V V V S

V V V V V V S S S S

V V V V V V S S S S

V V V V V V V S S S

V V V V V V V S S S

V V V V V V V V V S

V V V V V V V V S S

V V V V V V V V S S

V V V V S S S S S S

(c)

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

Percentage of Links

V V V V V V S S S S

V V V V V V S S S S

V V V V V V V V S S

V V V V V V S S S S

V V V V V V V V V S

V V V V V V S S S S

V V V V V V S S S S

V V V V V V V S S S

V V V V V V V S S S

V V V V V V V V V S

V V V V V V V V S S

V V V V V V V V S S

V V V V S S S S S S

(d)

100

80

60

40

20

0

20

40

60

80

(a
)

A
ctiv

a
tio

n
R

a
te

30

24

19

13

8

2

2

8

13

19

24

(b
)

L
in

k
F
a
n
o
u
t

100

80

60

40

20

0

20

40

60

80

(a
)

A
ctiv

a
tio

n
R

a
te

30

24

19

13

8

2

2

8

13

19

24

(b
)

L
in

k
F
a
n
o
u
t

Figure 7: Application communication patterns on pipelined
(a,b) and scheduled (c,d) CGRAarchitectures. (a) and (c) show
the activation rate distribution of logical links at runtime.
Links sorted by granularity, then rate; darker boxes indicate
higher rates. The split between green and pink shows the
ratio of logical vector to scalar links. (b) and (d) show the
distribution of broadcast link fanouts.

of individual compute PBs. Even applications limited by on-chip re-
sources have less than a 30% �ring rate on the busiest logical links;
this reveals an opportunity for link sharing without sacri�cing
performance.

Figure 8 shows statistics describing the VB data�ow graph before
and after partitioning. The blue bars show the number of VBs,
number of logical links, and maximum VB input/output degrees in
the original parallelized program; the yellow and green bars show
the same statistics after partitioning. Fewer VBs are partitioned for
hybrid networks and dynamic networks with the time-scheduled
architecture, as explained in Section 3.1.2. The output degree does

Figure 8: Characteristics of program graphs.

not change with partitioning because most outputs with a large
degree are from broadcast links.

4.2 Area and Energy Characterization
Figure 9 shows that switch and router power scale linearly with
the rate of data transmission, but that there is non-zero power
at zero-load. For simulation, the duty cycle refers to the amount
of o�ered tra�c, not accepted tra�c. Because our router uses a
crossbar without speedup [10], the testbench saturates the router at
60% duty cycle when providing uniform random tra�c. Nonetheless,
router power still scales linearly with accepted tra�c.

A sweep of di�erent switch and router parameters is shown in
Figure 10. Subplots (d,e,f) show the energy necessary to transmit a
single bit through a switch or router. Subplot (a) shows the roughly
quadratic scaling of switch area with the number of links between
adjacent switches. Vector switches scale worse with increasing
bandwidth than scalar switches, mostly due to increased crossbar
wire load. At the same granularity, a router consumes more energy
a switch to transmit a single bit of data, even though the overall
router consumes less power (as shown in Figure 9); this is because
the switch has a higher throughput than the router. The vector
router has lower per-bit energy relative to the scalar router because
it can amortize the cost of allocation logic, whereas the vector
switch has higher per-bit energy relative to the scalar switch due to
increased capacitance in the large crossbar. Increasing the number
of VCs or bu�er depth per VC also signi�cantly increases router

Scalable Interconnects for Reconfigurable Spatial Architectures ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

Notation Description

[S,H,D] Static, hybrid, and dynamic network

x# Static bandwidth on vector network (#links between switches)

f# Flit width of a router or vector width of a switch

v# Number of VC in router

b# Number of bu�ers per VC in router

[db,cd] Bu�ered vs. credit-based �ow control in switch

Table 2: Network design parameter summary.

area and energy, but reducing the router �it width can signi�cantly
reduce router area.

Overall, these results show that scaling static bandwidth is cheaper
than scaling dynamic bandwidth, and a dynamic networkwith small
routers can be used to improve link sharing for low bandwidth com-
munication. We also see that a specialized scalar network, built
with switches, adds negligible area compared to and is more energy
e�cient than the vector network. Therefore, we use a static scalar
network with a bandwidth of 4 for the remainder of our evaluation,
except when evaluating the pure dynamic network. The dynamic
network is also optimized for the rare instances when the static
scalar network is insu�cient. When routers transmit scalar data,
the high bits of data bu�ers are clock-gated, reducing energy as
shown in (f). Figure 11 summarizes the area breakdown of all the
network con�gurations that we evaluate.

4.3 Network Architecture Exploration
We evaluate our network con�gurations in �ve dimensions: per-
formance (perf), performance per network area (perf/area), per-
formance per network power (perf/watt), network area e�ciency
(1/area), and network power e�ciency (1/power). Among these
metrics, performance is the most important: networks only con-
sume a small fraction of the overall accelerator area and energy
(roughly 10-20%). Because the two key advantages of hardware
accelerators are high throughput and low latency, we �lter out a
network design point if it introduces more than 10% performance
overhead. This is calculated by comparing to an ideal network with
in�nite bandwidth and zero latency.

For metrics that are calculated per application, such as perfor-
mance, performance/watt, and power e�ciency, we �rst normalize
the metric with respect to the worst network con�guration for
that application. For each network con�guration, we present a
geometric mean normalized across all applications. For all of our
experiments, except Section 4.3.1, we use a network size of 14 ⇥ 14
end-point PBs. All vector networks use a vectorization factor of 16
(512 bit messages).

4.3.1 Bandwidth scaling with network size. Figure 12 shows how dif-
ferent networks allow several applications to scale to di�erent num-
bers of PBs. For IO-bound applications (BlackScholes and TPCHQ6),
performance does not scale with additional compute and on-chip
memory resources. However, the performance of compute-bound
applications (GEMM and SGD) improves with increased resources,
but plateaus at a level that is determined by on-chip network band-
width. This creates a trade-o� in accelerator design between highly

0 20 40 60 80 100

Duty Cycle (%)

0.00

0.05

0.10

0.15

P
ow

er
(W

)

Inactive

Active

static

static+dynamic

0 20 40 60 80 100

Duty Cycle (%)

0.00

0.01

0.02

0.03

0.04

P
ow

er
(W

)

Inactive

Active

Figure 9: Switch and router power with varying duty cycle.

0.00

0.05

0.10

0.15

0.20

0.25

A
re

a
(m

m
2
)

(a)

Switch

(b)

Router

(c)

Router (Scalar)

1 2 3 4 5
Static Bandwidth

0.00

0.02

0.04

0.06

P
er

-b
it

F
li
t

E
n
er

gy
(p

J)

(d) f512-cd

f32-cd

f512-db

f32-db

2 4 8
VC

(e)

2 4 8
VC

(f) f512-b2

f512-b4

f256-b2

f256-b4

f128-b2

f128-b4

Figure 10: Area and per-bit energy for (a,d) switches and
(b,c,e,f) routers. (c,f) Subplots (c,f) show area and energy of
the vector router when used for scalar values (32-bit).

Figure 11: Area breakdown for all network con�gurations.

vectorized compute PBs with a small network—which would be
underutilized for non-vectorized problems—and smaller compute
PBs with limited performance due to network overhead. For more
�nely grained compute PBs, both more switches and more costly
(higher-radix) switches must be employed to meet application re-
quirements.

The scaling of time-scheduled accelerators (bottom row) is much
less dramatic than that of deeply pipelined architectures (top row).
Although communication between PBs in these architectures is
less frequent, the scheduled architecture must use additional par-
allelization to match the throughput of the pipelined architecture;
this translates to larger network sizes.

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Y. Zhang and A. Rucker, et al.

0

20

40

P
ip

el
in

ed
N

or
m

P
er

fo
rm

an
ce

BlackScholes TPCHQ6 GEMM SGD

D-x0

S-x3

S-x2

S-x1

H-x3

H-x2

H-x1

32 64 128

PBs

0

5

10

15

S
ch

ed
u
le

d
N

or
m

P
er

fo
rm

an
ce

32 64 128

PBs
32 64 128

PBs
32 64 128

PBs

Figure 12: Performance scaling with increased CGRA grid
size for di�erent networks.

For pipelined architectures, both hybrid and static networks pro-
vide similar scaling with the same static bandwidth: the additional
bandwidth from the dynamic network in hybrid networks does
not provide additional scaling. This is mostly due to a bandwidth
bottleneck between a PB and its router, which prevents the PB from
requesting multiple elements per cycle. Hybrid networks tend to
provide better scaling for time-scheduled architectures; multiple
streams can be timemultiplexed at each ejection port without losing
performance.

4.3.2 Bandwidth and flow control in switches. In this section, we
study the impact of static network bandwidth and �ow control
mechanism (per-hop vs. end-to-end credit-based). On the left side of
Figure 14, we show that increased static bandwidth results in a linear
performance increase and a superlinear increase in area and power.
As shown in Section 4.3.1, any increase in accelerator size must
be coupled with increased network bandwidth to e�ectively scale
performance. This indicates that network overhead will increase
with the size of an accelerator.

The right side of Figure 14 shows that, although credit-based �ow
control reduces the amount of bu�ering in switches and decreases
network area and energy, application performance is signi�cantly
impacted. This is the result of imbalanced data-�ow pipelines in
the program: when there are parallel long and short paths over the
network, there must be su�cient bu�er space on the short path
equal to the product of throughput and the di�erence in latency.
Because performance is our most important metric, credit-based
�ow control is not feasible, especially because the impact of bubbles
increases with communication distance, and therefore network size.

4.3.3 VC count and reduced flit width in routers. In this experiment,
we study the area-energy-performance trade-o� between routers
with di�erent VC counts. As shown in Section 4.2, using many VCs
increases both network area and energy. However, using too few
VCs may force roundabout routing on the dynamic network or
result in VC allocation failure when the network is heavily utilized.
Nonetheless, the left side of Figure 15 shows minimal performance
improvement from using more VCs.

Figure 13: Number of VCs required for dynamic and hybrid
networks. (No VCs indicates that all tra�c is mapped to the
static network.)

Perf

Perf / Area

1 / Area

1 / Power

Perf / Watt

1.0 2.0

x1

x2

x3

0.8

1.5

1.7

3.4

2.2

4.3
0.9

1.8

Perf

Perf / Area

1 / Area

1 / Power

Perf / Watt

1.7 3.3

cd

db

1.4

2.7

0.6

1.2

1.1

2.1
0.9

1.7

Figure 14: Impact of bandwidth and �ow control strategies
in switches.

Perf

Perf / Area

Perf / Watt

0.4 0.7 1.1

v4

v2

0.4

0.8

1.3

0.4

0.8

1.1

Perf

Perf / Area

Perf / Watt

0.3 0.7 1.0

f512

f128

f256

0.6

1.1

1.7

0.3

0.7

1.0

Figure 15: Impact of VC count and �it widths in routers.

Perf

Perf / Area

Perf / Watt

Pipelined

2.3 4.7 7.0

H-x2-v4-f128-db

S-x3-db

2.3

4.6

6.9

0.8

1.5

2.3

Perf

Perf / Area

Perf / Watt

Scheduled

2.9 5.7 8.6

H-x2-v4-f512-db

S-x3-db

0.9

1.7

2.6

0.7

1.5

2.2

Figure 16: Geometric mean improvement for the best net-
work con�gurations, relative to the worst con�guration.

Scalable Interconnects for Reconfigurable Spatial Architectures ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

Figure 17: Normalized performance for di�erent network con�gurations.

Figure 18: (a,d): Normalized performance/watt. (b,e): Per-
centage of compute and memory PBs utilized for each net-
work con�guration. (c,f): Total data movement (hop count).

Therefore, for each network design, we use a VC count equal to
the maximum number of VCs required to map all applications to
that network. Figure 13 shows that the best hybrid network con-
�gurations with 2x and 3x static bandwidth require at most 2 VCs,
whereas the pure dynamic network requires 4 VCs to map all appli-
cations. Because dynamic network communication is infrequent,
hybrid networks with fewer VCs provide both better energy and
area e�ciency than networks with more VCs, even though this
constrains routing on the dynamic network.

We also explore the e�ects of reducing dynamic network band-
width by using smaller routers; as shown in Section 4.2, routers with
smaller �its have a much smaller area. Ideally, we could scale static
network bandwidth while using a low-bandwidth router to provide
an escape path and reduce overall area and energy overhead. The
right side of Figure 15 shows that, for a hybrid network, reducing
�it width improves area e�ciency with minimal performance loss.

4.3.4 Static vs. hybrid vs. dynamic networks. Figure 17 shows the
normalized performance for each application running on several
network con�gurations. For some applications, the bar for S-x1 is
missing; this indicates that place and route failed for all unrolling
factors. For DRAM-bound applications, the performance variation
between di�erent networks is trivial because only a small fraction
of the network is being used. In a few cases (Kmeans and GDA), hy-
brid networks provide better performance due to slightly increased
bandwidth. For compute-bound applications, performance primar-
ily correlates with network bandwidth because more bandwidth
permits a higher parallelization factor.

The highest bandwidth static network uses the most PBs, as
shown in Figures 18(b,e), because it permits more parallelization.
It also has more data movement, as shown in (c,f), because PBs
can be distributed farther apart. Due to bandwidth limitations, low-
bandwidth networks perform best with small unrolling factors—
they are unable to support the bisection bandwidth of larger pro-
gram graphs. This is evident in Figures 18(b,e), where networks
D-x0-v4-f512 and S-x2 have small PB utilizations.

With the same static bandwidth, most hybrid networks have bet-
ter energy e�ciency than the corresponding pure static networks,
even though routers take more energy than switches to transmit

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Y. Zhang and A. Rucker, et al.

the same amount of data. This is a result of allowing a small amount
of tra�c to escape onto the dynamic network: with the dynamic
network as a safety net, static place and route tends to converge
to better placements with less overall communication. This can be
seen in Figures 18(c,f), where most static networks have larger hop
counts than the corresponding hybrid network; hop count is the
sum of all runtime link traversals, normalized per-application to the
network con�guration with the most hops. Subplots (e,f) show that
more PBs are utilized with static networks than hybrid networks.
This is because the compiler imposes less stringent IO constraints
on PBs when partitioning for the hybrid network (as explained in
Section 3.1.2), which results in fewer PBs, less data movement, and
greater energy e�ciency for hybrid networks.

In Figure 16, we summarize the best perf/watt and perf/area
(among network con�gurations with <10% performance overhead)
for pipelined and scheduled CGRA architectures. Pure dynamic
networks are not shown because they perform poorly due to insuf-
�cient bandwidth. On the pipelined CGRA, the best hybrid network
provides a 6.4x performance increase, 2.3x better energy e�ciency,
and a 6.9x perf/area increase over the worst network con�guration.
The best static network provides 7x better performance, 1.2x better
energy e�ciency, and 6.3x better perf/area. The hybrid network
gives the best perf/area and perf/watt, with a small degradation in
performance when compared to the static network. On the time-
scheduled CGRA, both static and hybrid networks have an 8.6x
performance improvement. The hybrid network gives a higher per-
f/watt improvement at 2.2x, whereas the static network gives a
higher perf/area improvement at 2.6x. Overall, the hybrid networks
deliver better energy e�ciency with shorter routing distances by
allowing an escape path on the dynamic network.

5 RELATEDWORK
Multiple decades of research have resulted in a rich body of litera-
ture, both in CGRAs [9, 55] and on-chip networks [24]. We discuss
relevant prior work under the following categories:

5.1 Tiled Processor Interconnects
Architectures such as Raw [53] and Tile [59] use scalar operand net-
works [54], which combine static and dynamic networks. Raw has
one static and two dynamic interconnects: the static interconnect
is used to route normal operand tra�c, one dynamic network is
used to route runtime-dependent values which could not be routed
on the static network, and the second dynamic network is used for
cache misses and other exceptions. Deadlock avoidance is guaran-
teed only in the second dynamic network, which is used to recover
from deadlocks in the �rst dynamic network. However, as described
in Section 1, wider buses and larger �it sizes create scalability issues
with two dynamic networks, including higher area and power. In
addition, our static VC allocation scheme ensures deadlock freedom
in our single dynamic network, obviating the need for deadlock re-
covery. The dynamic Raw network also does not preserve operand
ordering, requiring an operand reordering mechanism at every tile.

TRIPS [50] is a tiled data�ow architecture with dynamic execu-
tion. TRIPS does not have a static interconnect, but contains two
dynamic networks [19]: an operand network to route operands
between tiles, and an on-chip network to communicate with cache

banks. Wavescalar [52] is another tiled data�ow architecture with
four levels of hierarchy, connected by dynamic interconnects that
vary in topology and bandwidth at each level. The Polymorphic
Pipeline Array [44] is a tiled architecture built to target mobile mul-
timedia applications. While compute resources are either statically
or dynamically provisioned via hardware virtualization support,
communication uses a dynamic scalar operand network.

5.2 CGRA Interconnects
Many previously proposed CGRAs use a word-level static intercon-
nect, which has better compute density than bit-based routing [60].
CGRAs such as HRL [14], DySER [18], and Elastic CGRAs [23] com-
monly employ two static interconnects: a word-level interconnect
to route data and a bit-level interconnect to route control signals.
Several works have also proposed a statically scheduled intercon-
nect [12, 38, 56] using a modulo schedule. While this approach is
e�ective for inner loops with predictable latencies and �xed initi-
ation intervals, variable latency operations and hierarchical loop
nests add scheduling complexity that prevents a single modulo
schedule. HyCube [27] has a similar statically scheduled network,
with the ability to bypass intermediate switches in the same cycle.
This allows operands to travel multiple hops in a single cycle, but
creates long wires and combinational paths and adversely a�ects
the clock period and scalability.

5.3 Design Space Studies
Several prior studies focus on tradeo�s with various network topolo-
gies, but do not characterize or quantify the role of dynamism in
interconnects. The Raw design space study [36] uses an analytical
model for applications as well as architectural resources to perform
a sensitivity analysis of compute and memory resources focused on
area, power, and performance, without varying the interconnect.
The ADRES design space study [6] focuses on area and energy
tradeo�s with di�erent network topologies with the ADRES [34]
architecture, where all topologies use a fully static interconnect.
KressArray Xplorer [22] similarly explores topology tradeo�s with
the KressArray [32] architecture. Other studies explore topologies
for mesh-based CGRAs [3] and more general CGRAs supporting
resource sharing [28]. Other tools like Sunmap [37] allow end users
to construct and explore various topologies.

5.4 Compiler Driven NoCs
Other prior works have used compiler techniques to optimize vari-
ous facets of NoCs. Some studies have explored statically allocating
virtual channels [29, 51] to multiple concurrent �ows to mitigate
head-of-line blocking. These studies propose an approach to derive
deadlock-free allocations based on the turn model [16]. While our
approach also statically allocates VCs, our method to guarantee
deadlock freedom di�ers from the aforementioned study as it does
not rely on the turn model. Ozturk et al. [42] propose a scheme to
increase the reliability of NoCs for chip multiprocessors by send-
ing packets over multiple links. Their approach uses integer linear
programming to balance the total number of links activated (an
energy-based metric) against the amount of packet duplication (re-
liability). Ababei et al. [1] use a static placement algorithm and an
estimate of reliability to attempt to guide placement decisions for

Scalable Interconnects for Reconfigurable Spatial Architectures ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

NoCs. Kapre et al. [26] develop a work�ow to map applications to
CGRAs using several transformations, including e�cient multicast
routing and node splitting, but do not consider optimizations such
as non-minimal routing.

6 CONCLUSION
In this work, we describe the mapping process from a high-level
program to a distributed spatial architecture. We show that target
application characteristics, compiler optimizations, and the under-
lying accelerator architecture must be considered when selecting
a network architecture, and that static network bandwidth scales
more e�ciently. Overall, hybrid networks tend to provide the best
energy e�ciency by reducing data movement using static place
and route, with a 2.3x improvement over the worst con�guration.
Both hybrid networks and static networks have a performance per
area improvement of around 7x for pipelined CGRAs and 2x for
time-scheduled CGRAs. Pure dynamic networks are unsuitable for
CGRA architectures due to insu�cient bandwidth.

Although it is possible to increase interconnect bandwidth, the
resources necessary for each node increase simultaneously. When
adding nodes, network area increases super-linearly because more
network nodes are added, and bandwidth must scale to allow ap-
plications to use the larger network. Due to these network-based
limitations, a spatially distributed array cannot be scaled simply
by increasing the number of compute tiles. Therefore, CGRAs of
the future may need to be spatially distributed across several chips,
allowing higher-dimensional networks to be used; in the meantime,
using static-dynamic hybrid networks can alleviate some of the
challenges involved in building larger arrays on-chip.

ACKNOWLEDGMENTS
We thank Gedeon Nyengele and Kartik Prabhu for their assistance
in simulation and data collection. This paper is based on research
partially supported by a Herbert Kunzel Stanford Graduate Fellow-
ship. This material is based on research sponsored by Air Force Re-
search Laboratory (AFRL) and Defense Advanced Research Projects
Agency (DARPA) under agreement number FA8650-18-2-7865. The
U.S. Government is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright nota-
tion thereon. The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily rep-
resenting the o�cial policies or endorsements, either expressed
or implied, of Air Force Research Laboratory (AFRL) and Defense
Advanced Research Projects Agency (DARPA) or the U.S. Govern-
ment. This research is also supported in part by a�liate members
and other supporters of the Stanford DAWN project: Ant Financial,
Facebook, Google, Infosys, Intel, Microsoft, NEC, Teradata, SAP
and VMware.

REFERENCES
[1] Cristinel Ababei, Hamed Sajjadi Kia, Om Prakash Yadav, and Jingcao Hu. 2011.

Energy and Reliability Oriented Mapping for Regular Networks-on-Chip. In
Proceedings of the Fifth ACM/IEEE International Symposium on Networks-on-Chip.
ACM, 121–128. https://doi.org/10.1145/1999946.1999966

[2] Amazon AWS. [n. d.]. Amazon EC2 F1 Instances. https://aws.amazon.com/ec2/
instance-types/f1.

[3] Nikhil Bansal, Sumit Gupta, Nikil Dutt, Alex Nicolau, and Rajesh Gupta. 2004.
Network Topology Exploration of Mesh-based Coarse-Grain Recon�gurable

Architectures. In Proceedings Design, Automation and Test in Europe Conference
and Exhibition, Vol. 1. 474–479. https://doi.org/10.1109/DATE.2004.1268891

[4] Daniel Ulf Becker. 2012. E�cient Microarchitecture for Network-on-Chip Routers.
Ph.D. Dissertation. Stanford University, Palo Alto.

[5] Ivo Bolsens. 2006. Programming Modern FPGAs, International Forum
on Embedded Multiprocessor SoC, Keynote,. http://www.xilinx.com/univ/
mpsoc2006keynote.pdf.

[6] Frank Bouwens, Mladen Berekovic, Andreas Kanstein, and Georgi Gaydadjiev.
2007. Architectural Exploration of the ADRES Coarse-Grained Recon�gurable
Array. In Recon�gurable Computing: Architectures, Tools and Applications, Pedro C.
Diniz, Eduardo Marques, Koen Bertels, Marcio Merino Fernandes, and João M. P.
Cardoso (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 1–13.

[7] Benton H. Calhoun, Joseph F. Ryan, Sudhanshu Khanna, Mateja Putic, and John
Lach. 2010. Flexible Circuits and Architectures for Ultralow Power. Proc. IEEE 98,
2 (Feb 2010), 267–282. https://doi.org/10.1109/JPROC.2009.2037211

[8] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling Li,
Tianshi Chen, Zhiwei Xu, Ninghui Sun, et al. 2014. DaDianNao: A Machine-
Learning Supercomputer. In Proceedings of the 47th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture. IEEE Computer Society, 609–622.
https://doi.org/10.1109/MICRO.2014.58

[9] Kiyoung Choi. 2011. Coarse-Grained Recon�gurable Array: Architecture and
Application Mapping. IPSJ Transactions on System LSI Design Methodology 4
(2011), 31–46. https://doi.org/10.2197/ipsjtsldm.4.31

[10] William James Dally and Brian Patrick Towles. 2004. Principles and Practices of
Interconnection Networks. Elsevier.

[11] Edsger W Dijkstra. 1959. A Note on Two Problems in Connexion with Graphs.
Numerische mathematik 1, 1 (1959), 269–271. https://doi.org/10.1007/BF01386390

[12] Grigoris Dimitroulakos, Michalis D Galanis, and Constantinos E Goutis. 2006.
Exploring the Design Space of an Optimized Compiler Approach for Mesh-
like Coarse-Grained Recon�gurable Architectures. In Parallel and Distributed
Processing Symposium, 2006. IPDPS 2006. 20th International. IEEE, 10–pp. https:
//doi.org/10.1109/IPDPS.2006.1639349

[13] Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Todd Massengill, Ming
Liu, Daniel Lo, Shlomi Alkalay, Michael Haselman, Logan Adams, Mahdi Ghandi,
Stephen Heil, Prerak Patel, Adam Sapek, Gabriel Weisz, Lisa Woods, Sitaram
Lanka, Steven K. Reinhardt, Adrian M. Caul�eld, Eric S. Chung, and Doug Burger.
2018. A Con�gurable Cloud-Scale DNN Processor for Real-Time AI. In 45th
ACM/IEEE Annual International Symposium on Computer Architecture, ISCA 2018,
Los Angeles, CA, USA, June 1-6, 2018. 1–14. https://doi.org/10.1109/ISCA.2018.
00012

[14] Mingyu Gao and Christos Kozyrakis. 2016. HRL: E�cient and Flexible Re-
con�gurable Logic for Near-Data Processing. In 2016 IEEE International Sym-
posium on High Performance Computer Architecture (HPCA). 126–137. https:
//doi.org/10.1109/HPCA.2016.7446059

[15] Eric Garcia and Maya Gupta. 2009. Lattice Regression. In Advances in Neural
Information Processing Systems. 594–602.

[16] Christopher J. Glass and Lionel M. Ni. 1992. The TurnModel for Adaptive Routing.
In [1992] Proceedings the 19th Annual International Symposium on Computer
Architecture. 278–287. https://doi.org/10.1109/ISCA.1992.753324

[17] Seth C. Goldstein, Herman Schmit, Matthew Moe, Mihai Budiu, Srihari Cadambi,
R. Reed Taylor, and Ronald Laufer. 1999. PipeRench: a coprocessor for streaming
multimedia acceleration. In Proceedings of the 26th International Symposium on
Computer Architecture (Cat. No.99CB36367). 28–39. https://doi.org/10.1109/ISCA.
1999.765937

[18] Venkatraman Govindaraju, Chen-Han Ho, and Karthikeyan Sankaralingam. 2011.
Dynamically Specialized Datapaths for Energy E�cient Computing. In Proceed-
ings of the 2011 IEEE 17th International Symposium on High Performance Computer
Architecture (HPCA ’11). IEEE Computer Society, Washington, DC, USA, 503–514.
https://doi.org/10.1109/HPCA.2011.5749755

[19] Paul Gratz, Changkyu Kim, Karthikeyan Sankaralingam, Heather Hanson, Premk-
ishore Shivakumar, Stephen W. Keckler, and Doug Burger. 2007. On-Chip Inter-
connection Networks of the TRIPS Chip. IEEE Micro 27, 5 (Sept. 2007), 41–50.
https://doi.org/10.1109/MM.2007.90

[20] Kaiyuan Guo, Lingzhi Sui, Jiantao Qiu, Song Yao, Song Han, Yu Wang, and
Huazhong Yang. 2016. From Model to FPGA: Software-Hardware Co-design for
E�cient Neural Network Acceleration. In 2016 IEEE Hot Chips 28 Symposium
(HCS). 1–27. https://doi.org/10.1109/HOTCHIPS.2016.7936208

[21] Andreas Hansson, Kees Goossens, andAndrei Rădulescu. 2007. AvoidingMessage-
Dependent Deadlock in Network-Based Systems on Chip. VLSI design 2007 (2007).
https://doi.org/10.1155/2007/95859

[22] Reiner Hartenstein, Michael Herz, Thomas Ho�mann, and Ulrich Nageldinger.
2000. KressArray Xplorer: A New CAD Environment to Optimize Recon�gurable
Datapath Array Architectures. In Proceedings 2000. Design Automation Conference
(DAC). 163–168. https://doi.org/10.1109/ASPDAC.2000.835089

[23] Yuanjie Huang, Paolo Ienne, Olivier Temam, Yunji Chen, and Chengyong Wu.
2013. Elastic CGRAs. In Proceedings of the ACM/SIGDA International Symposium
on Field Programmable Gate Arrays (FPGA ’13). ACM, New York, NY, USA, 171–
180. https://doi.org/10.1145/2435264.2435296

https://doi.org/10.1145/1999946.1999966
https://aws.amazon.com/ec2/instance-types/f1
https://aws.amazon.com/ec2/instance-types/f1
https://doi.org/10.1109/DATE.2004.1268891
http://www.xilinx.com/univ/mpsoc2006keynote.pdf
http://www.xilinx.com/univ/mpsoc2006keynote.pdf
https://doi.org/10.1109/JPROC.2009.2037211
https://doi.org/10.1109/MICRO.2014.58
https://doi.org/10.2197/ipsjtsldm.4.31
https://doi.org/10.1007/BF01386390
https://doi.org/10.1109/IPDPS.2006.1639349
https://doi.org/10.1109/IPDPS.2006.1639349
https://doi.org/10.1109/ISCA.2018.00012
https://doi.org/10.1109/ISCA.2018.00012
https://doi.org/10.1109/HPCA.2016.7446059
https://doi.org/10.1109/HPCA.2016.7446059
https://doi.org/10.1109/ISCA.1992.753324
https://doi.org/10.1109/ISCA.1999.765937
https://doi.org/10.1109/ISCA.1999.765937
https://doi.org/10.1109/HPCA.2011.5749755
https://doi.org/10.1109/MM.2007.90
https://doi.org/10.1109/HOTCHIPS.2016.7936208
https://doi.org/10.1155/2007/95859
https://doi.org/10.1109/ASPDAC.2000.835089
https://doi.org/10.1145/2435264.2435296

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Y. Zhang and A. Rucker, et al.

[24] Natalie Enright Jerger, Tushar Krishna, and Li-Shiuan Peh. 2017. On-Chip Net-
works, Second Edition. Synthesis Lectures on Computer Architecture 12, 3 (2017),
1–210. https://doi.org/10.2200/S00772ED1V01Y201704CAC040

[25] Nan Jiang, James Balfour, Daniel U Becker, Brian Towles, William J Dally, George
Michelogiannakis, and John Kim. 2013. A Detailed and Flexible Cycle-Accurate
Network-on-Chip Simulator. In Performance Analysis of Systems and Software
(ISPASS), 2013 IEEE International Symposium on. IEEE, 86–96. https://doi.org/10.
1109/ISPASS.2013.6557149

[26] Nachiket Kapre and André Dehon. 2011. An NoC Tra�c Compiler for E�cient
FPGA Implementation of Sparse Graph-Oriented Workloads. International Jour-
nal of Recon�gurable Computing 2011 (2011). https://doi.org/10.1155/2011/745147

[27] Manupa Karunaratne, Aditi Kulkarni Mohite, Tulika Mitra, and Li-Shiuan Peh.
2017. HyCUBE: A CGRA with Recon�gurable Single-cycle Multi-hop Intercon-
nect. In Proceedings of the 54th Annual Design Automation Conference 2017 (DAC
’17). ACM, New York, NY, USA, Article 45, 6 pages. https://doi.org/10.1145/
3061639.3062262

[28] Yoonjin Kim, Rabi N. Mahapatra, and Kiyoung Choi. 2010. Design Space Ex-
ploration for E�cient Resource Utilization in Coarse-Grained Recon�gurable
Architecture. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 18,
10 (Oct 2010), 1471–1482. https://doi.org/10.1109/TVLSI.2009.2025280

[29] Michel A. Kinsy, Myong Hyon Cho, Tina Wen, Edward Suh, Marten van Dijk, and
Srinivas Devadas. 2009. Application-aware Deadlock-free Oblivious Routing. In
Proceedings of the 36th Annual International Symposium on Computer Architecture
(ISCA ’09). ACM, New York, NY, USA, 208–219. https://doi.org/10.1145/1555754.
1555782

[30] David Koeplinger, Matthew Feldman, Raghu Prabhakar, Yaqi Zhang, StefanHadjis,
Ruben Fiszel, Tian Zhao, Luigi Nardi, Ardavan Pedram, Christos Kozyrakis,
and Kunle Olukotun. 2018. Spatial: A Language and Compiler for Application
Accelerators. In Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI 2018). ACM, New York, NY, USA,
296–311. https://doi.org/10.1145/3192366.3192379

[31] David Koeplinger, Raghu Prabhakar, Yaqi Zhang, Christina Delimitrou, Chris-
tos Kozyrakis, and Kunle Olukotun. 2016. Automatic Generation of E�cient
Accelerators for Recon�gurable Hardware. In 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture (ISCA). 115–127. https:
//doi.org/10.1109/ISCA.2016.20

[32] Rainer Kress. 1996. A Fast Recon�gurable ALU for Xputers.
[33] Ian Kuon, Russell Tessier, and Jonathan Rose. 2008. FPGA Architecture: Survey

and Challenges. Found. Trends Electron. Des. Autom. 2, 2 (Feb. 2008), 135–253.
https://doi.org/10.1561/1000000005

[34] Bingfeng Mei, Serge Vernalde, Diederik Verkest, Hugo De Man, and Rudy Lauw-
ereins. 2003. ADRES: An Architecture with Tightly Coupled VLIW Processor and
Coarse-Grained Recon�gurable Matrix. In Field Programmable Logic and Applica-
tion, Peter Y. K. Cheung and George A. Constantinides (Eds.). Springer Berlin Hei-
delberg, Berlin, Heidelberg, 61–70. https://doi.org/10.1007/978-3-540-45234-8_7

[35] Mahim Mishra, Timothy J. Callahan, Tiberiu Chelcea, Girish Venkataramani,
Seth C. Goldstein, andMihai Budiu. 2006. Tartan: Evaluating Spatial Computation
for Whole Program Execution. In Proceedings of the 12th International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS XII). ACM, New York, NY, USA, 163–174. https://doi.org/10.1145/
1168857.1168878

[36] Csaba Andras Moritz, Donald Yeung, and Anant Agarwal. 1998. Exploring
Optimal Cost-Performance Designs for Raw Microprocessors. In Proceedings.
IEEE Symposium on FPGAs for Custom Computing Machines (Cat. No.98TB100251).
12–27. https://doi.org/10.1109/FPGA.1998.707877

[37] Srinivasan Murali and Giovanni De Micheli. 2004. SUNMAP: a Tool for Auto-
matic Topology Selection and Generation for NoCs. In Proceedings. 41st Design
Automation Conference, 2004. 914–919. https://doi.org/10.1145/996566.996809

[38] Chris Nicol. [n. d.]. A Coarse Grain Recon�gurable Array (CGRA) for Statically
Scheduled Data Flow Computing. https://wavecomp.ai/wp-content/uploads/
2018/12/WP_CGRA.pdf

[39] Juanjo Noguera, Chris Dick, Vinod Kathail, Gaurav Singh, Kees Vissers, and
Ralph Wittig. 2018. Xilinx Project Everest: ‘HW/SW Programmable En-
gine’ (Hot Chips 30). http://www.hotchips.org/hc30/2conf/2.03_Xilinx_Juanjo_
XilinxSWPEHotChips20180819.pdf

[40] Tony Nowatzki, Vinay Gangadhar, Newsha Ardalani, and Karthikeyan Sankar-
alingam. 2017. Stream-data�ow acceleration. In 2017 ACM/IEEE 44th Annual
International Symposium on Computer Architecture (ISCA). 416–429. https:
//doi.org/10.1145/3079856.3080255

[41] Jian Ouyang, Shiding Lin, Wei Qi, Yong Wang, Bo Yu, and Song Jiang. 2014.
SDA: Software-De�ned Accelerator for LargeScale DNN Systems (Hot Chips 26).
https://doi.org/10.1109/HOTCHIPS.2014.7478821

[42] Ozcan Ozturk, Mahmut Kandemir, Mary J Irwin, and Sri HK Narayanan. 2010.
Compiler Directed Network-on-Chip Reliability Enhancement for Chip Multi-
processors. ACM Sigplan Notices 45, 4 (2010), 85–94. https://doi.org/10.1145/
1755951.1755902

[43] Angshuman Parashar, Michael Pellauer, Michael Adler, Bushra Ahsan, Neal Crago,
Daniel Lustig, Vladimir Pavlov, Antonia Zhai, Mohit Gambhir, Aamer Jaleel,

Randy Allmon, Rachid Rayess, Stephen Maresh, and Joel Emer. 2013. Triggered
Instructions: A Control Paradigm for Spatially-programmed Architectures. In
Proceedings of the 40th Annual International Symposium on Computer Architecture
(ISCA ’13). ACM, New York, NY, USA, 142–153. https://doi.org/10.1145/2485922.
2485935

[44] Hyunchul Park, Yongjun Park, and Scott Mahlke. 2009. Polymorphic Pipeline
Array: A Flexible Multicore Accelerator with Virtualized Execution for Mobile
Multimedia Applications. In 2009 42nd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). 370–380. https://doi.org/10.1145/1669112.1669160

[45] Kara K. W. Poon, Steven J. E. Wilton, and Andy Yan. 2005. A Detailed Power
Model for Field-programmable Gate Arrays. ACM Trans. Des. Autom. Electron.
Syst. 10, 2 (April 2005), 279–302. https://doi.org/10.1145/1059876.1059881

[46] Raghu Prabhakar, Yaqi Zhang, David Koeplinger, Matt Feldman, Tian Zhao,
Stefan Hadjis, Ardavan Pedram, Christos Kozyrakis, and Kunle Olukotun. 2017.
Plasticine: A Recon�gurable Architecture For Parallel Paterns. In Proceedings
of the 44th Annual International Symposium on Computer Architecture. ACM,
389–402. https://doi.org/10.1145/3079856.3080256

[47] Robert Clay Prim. 1957. Shortest Connection Networks and Some Generalizations.
Bell System Technical Journal 36, 6 (1957), 1389–1401.

[48] Andrew Putnam, Adrian M. Caul�eld, Eric S. Chung, Derek Chiou, Kypros Con-
stantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth
Gopal, Jan Gray, Michael Haselman, Scott Hauck, Stephen Heil, Amir Hormati,
Joo-Young Kim, Sitaram Lanka, James Larus, Eric Peterson, Simon Pope, Aaron
Smith, Jason Thong, Phillip Yi Xiao, and Doug Burger. 2014. A Recon�gurable
Fabric for Accelerating Large-scale Datacenter Services. In Proceeding of the
41st Annual International Symposium on Computer Architecuture (ISCA ’14). IEEE
Press, Piscataway, NJ, USA, 13–24. https://doi.org/10.1145/2678373.2665678

[49] Daniel Sanchez, George Michelogiannakis, and Christos Kozyrakis. 2010. An
Analysis of On-chip Interconnection Networks for Large-scale Chip Multipro-
cessors. ACM Trans. Archit. Code Optim. 7, 1, Article 4 (May 2010), 28 pages.
https://doi.org/10.1145/1736065.1736069

[50] Karthikeyan Sankaralingam, Ramadass Nagarajan, Haiming Liu, Changkyu Kim,
Jaehyuk Huh, Doug Burger, Stephen W. Keckler, and Charles R. Moore. 2003.
Exploiting ILP, TLP, and DLP with the polymorphous TRIPS architecture. In
30th Annual International Symposium on Computer Architecture, 2003. Proceedings.
422–433. https://doi.org/10.1109/ISCA.2003.1207019

[51] Keun Sup Shim, Myong Hyon Cho, Michel Kinsy, Tina Wen, Mieszko Lis, G. Ed-
ward Suh, and Srinivas Devadas. 2009. Static Virtual Channel Allocation in
Oblivious Routing. In 2009 3rd ACM/IEEE International Symposium on Networks-
on-Chip. 38–43. https://doi.org/10.1109/NOCS.2009.5071443

[52] Steven Swanson, Andrew Schwerin, Martha Mercaldi, Andrew Petersen, Andrew
Putnam, Ken Michelson, Mark Oskin, and Susan J. Eggers. 2007. The WaveScalar
Architecture. ACM Trans. Comput. Syst. 25, 2, Article 4 (May 2007), 54 pages.
https://doi.org/10.1145/1233307.1233308

[53] Michael Bedford Taylor, Jason Kim, Jason Miller, David Wentzla�, Fae Ghodrat,
Ben Greenwald, Henry Ho�man, Paul Johnson, Jae-Wook Lee, Walter Lee, Albert
Ma, Arvind Saraf, Mark Seneski, Nathan Shnidman, Volker Strumpen, Matt Frank,
Saman Amarasinghe, and Anant Agarwal. 2002. The Raw Microprocessor: A
Computational Fabric for Software Circuits and General-Purpose Programs. IEEE
Micro 22, 2 (March 2002), 25–35. https://doi.org/10.1109/MM.2002.997877

[54] Michael Bedford Taylor, Walter Lee, Saman Amarasinghe, and Anant Agar-
wal. 2003. Scalar Operand Networks: On-Chip Interconnect for ILP in Par-
titioned Architectures. In Proceedings of the 9th International Symposium on
High-Performance Computer Architecture (HPCA ’03). IEEE Computer Society,
Washington, DC, USA, 341–353. https://doi.org/10.1109/HPCA.2003.1183551

[55] Russel Tessier, Kenneth Pocek, and André DeHon. 2015. Recon�gurable Com-
puting Architectures. Proc. IEEE 103, 3 (March 2015), 332–354. https://doi.org/
10.1109/JPROC.2014.2386883

[56] Brian Van Essen, Aaron Wood, Allan Carroll, Stephen Friedman, Robin Panda,
Benjamin Ylvisaker, Carl Ebeling, and Scott Hauck. 2009. Static Versus Scheduled
Interconnect in Coarse-Grained Recon�gurable Arrays. In Field Programmable
Logic and Applications, 2009. FPL 2009. International Conference on. IEEE, 268–275.
https://doi.org/10.1109/FPL.2009.5272293

[57] David Wang, Brinda Ganesh, Nuengwong Tuaycharoen, Kathleen Baynes, Aamer
Jaleel, and Bruce Jacob. 2005. DRAMsim: A Memory System Simulator. SIGARCH
Comput. Archit. News 33, 4 (Nov. 2005), 100–107. https://doi.org/10.1145/1105734.
1105748

[58] Xiaohang Wang, Peng Liu, Mei Yang, and Yingtao Jiang. 2013. Avoiding Request–
Request Type Message-Dependent Deadlocks in Networks-on-Chips. Parallel
Comput. 39, 9 (2013), 408–423. https://doi.org/10.1016/j.parco.2013.05.002

[59] David Wentzla�, Patrick Gri�n, Henry Ho�mann, Liewei Bao, Bruce Edwards,
Carl Ramey, Matthew Mattina, Chyi-Chang Miao, John F. Brown III, and Anant
Agarwal. 2007. On-Chip Interconnection Architecture of the Tile Processor. IEEE
Micro 27, 5 (Sept. 2007), 15–31. https://doi.org/10.1109/MM.2007.89

[60] Andy Ye and Jonathan Rose. 2006. Using Bus-based Connections to Improve
Field-Programmable Gate-array Density for Implementing Datapath Circuits.
IEEE Trans. Very Large Scale Integr. Syst. 14, 5 (May 2006), 462–473. https:
//doi.org/10.1109/TVLSI.2006.876095

https://doi.org/10.2200/S00772ED1V01Y201704CAC040
https://doi.org/10.1109/ISPASS.2013.6557149
https://doi.org/10.1109/ISPASS.2013.6557149
https://doi.org/10.1155/2011/745147
https://doi.org/10.1145/3061639.3062262
https://doi.org/10.1145/3061639.3062262
https://doi.org/10.1109/TVLSI.2009.2025280
https://doi.org/10.1145/1555754.1555782
https://doi.org/10.1145/1555754.1555782
https://doi.org/10.1145/3192366.3192379
https://doi.org/10.1109/ISCA.2016.20
https://doi.org/10.1109/ISCA.2016.20
https://doi.org/10.1561/1000000005
https://doi.org/10.1007/978-3-540-45234-8_7
https://doi.org/10.1145/1168857.1168878
https://doi.org/10.1145/1168857.1168878
https://doi.org/10.1109/FPGA.1998.707877
https://doi.org/10.1145/996566.996809
https://wavecomp.ai/wp-content/uploads/2018/12/WP_CGRA.pdf
https://wavecomp.ai/wp-content/uploads/2018/12/WP_CGRA.pdf
http://www.hotchips.org/hc30/2conf/2.03_Xilinx_Juanjo_XilinxSWPEHotChips20180819.pdf
http://www.hotchips.org/hc30/2conf/2.03_Xilinx_Juanjo_XilinxSWPEHotChips20180819.pdf
https://doi.org/10.1145/3079856.3080255
https://doi.org/10.1145/3079856.3080255
https://doi.org/10.1109/HOTCHIPS.2014.7478821
https://doi.org/10.1145/1755951.1755902
https://doi.org/10.1145/1755951.1755902
https://doi.org/10.1145/2485922.2485935
https://doi.org/10.1145/2485922.2485935
https://doi.org/10.1145/1669112.1669160
https://doi.org/10.1145/1059876.1059881
https://doi.org/10.1145/3079856.3080256
https://doi.org/10.1145/2678373.2665678
https://doi.org/10.1145/1736065.1736069
https://doi.org/10.1109/ISCA.2003.1207019
https://doi.org/10.1109/NOCS.2009.5071443
https://doi.org/10.1145/1233307.1233308
https://doi.org/10.1109/MM.2002.997877
https://doi.org/10.1109/HPCA.2003.1183551
https://doi.org/10.1109/JPROC.2014.2386883
https://doi.org/10.1109/JPROC.2014.2386883
https://doi.org/10.1109/FPL.2009.5272293
https://doi.org/10.1145/1105734.1105748
https://doi.org/10.1145/1105734.1105748
https://doi.org/10.1016/j.parco.2013.05.002
https://doi.org/10.1109/MM.2007.89
https://doi.org/10.1109/TVLSI.2006.876095
https://doi.org/10.1109/TVLSI.2006.876095

	Abstract
	1 Introduction
	2 Background
	2.1 Application Characteristics
	2.2 Design Space for Network Architectures
	2.3 High-Level Abstraction

	3 Methodology
	3.1 Compilation
	3.2 Placement and Routing
	3.3 Simulation

	4 Evaluation
	4.1 Application Characterization
	4.2 Area and Energy Characterization
	4.3 Network Architecture Exploration

	5 Related Work
	5.1 Tiled Processor Interconnects
	5.2 CGRA Interconnects
	5.3 Design Space Studies
	5.4 Compiler Driven NoCs

	6 Conclusion
	Acknowledgments
	References

