Scalable Interconnects for Reconfigurable Spatial Architectures

Yaqi Zhang, Alexander Rucker, Matthew Vilim, Raghu Prabhakar, William Hwang, Kunle Olukotun

> Electrical Engineering Stanford University

ISCA '19: The 46th International Symposium on Computer Architecture, Phoenix, AZ

Spatial Accelerators

- Energy efficient
- High-throughput
- Low-latency

Examples:

- Plasticine (ISCA '17)
- Compressed-sparse CNN accelerator (ISCA '17)
- Stream-dataflow accelerator (ISCA '17)

Accelerator Characteristics

- High compute density
- High on-chip memory bandwidth

Accelerator Characteristics

- High compute density
- High on-chip memory bandwidth
- Distributed compute and memory resources
- Streaming interface between compute and memory
- Statically mapped and scheduled compute graph

On-chip networks play a critical role in:

• Energy efficiency (\downarrow data movement)

- Energy efficiency (↓ data movement)
- Flexibility

- Energy efficiency (↓ data movement)
- Flexibility
- Scalability

- Energy efficiency (↓ data movement)
- Flexibility
- Scalability
- Compute utilization

Architocturo	Communication		
Architecture	Frequency	Granularity	Limited by
Processor	Infrequent	Packet	Latency

Memory Bus Multi-Processor

Scalable Interconnects for Reconfigurable Spatial Architectures

Architocturo	Communication		Limited by
Architecture	Frequency	Granularity	Lillined by
Processor	Infrequent	Packet	Latency

Multi-Processor

Architactura	Communication		Limited by
Architecture	Frequency	Granularity	Linited by
Processor	Infrequent	Packet	Latency
Spatial Accelerator	Frequent	Fine-grained	

Architactura	Communication		Limited by
Architecture	Frequency	Granularity	Linined by
Processor	Infrequent	Packet	Latency
Spatial Accelerator	Frequent	Fine-grained	Throughput

Motivation

Network Design Space

Compilation Flow

Evaluation

Scalable Interconnects for Reconfigurable Spatial Architectures

Static Network

Pros	Cons
Guaranteed bandwidth	Low link utilization P&R failures

Dynamic Network

Pros	Cons
Link sharing	Limited bandwidth Deadlock

Hybrid Network: Static and Dynamic

Pros	Cons
Link sharing More bandwidth Guaranteed P&R	More area More static power

Motivation

Network Design Space

Compilation Flow

Evaluation

A DSL for Reconfigurable Accelerators

- Annotate data size N
- Calculate loop iterations

Accelerator Compiler

- Allocate compute and memory Virtual Blocks (VBs)
- Infer activation counts for logical links

Partition VB graph to meet hardware constraints

Scalable Interconnects for Reconfigurable Spatial Architectures

Mapping

- Partition VB graph to meet hardware constraints
- Place and route the VB graph onto the network
- Allocate VCs for the dynamic network

• Start with random placement

- Start with random placement
- Route all links, in order of activation count

- Start with random placement
- Route all links, in order of activation count
 - Build most efficient broadcast tree
 - Guarantee static network placement, if possible

- Start with random placement
- Route all links, in order of activation count
 - Build most efficient broadcast tree
 - Guarantee static network placement, if possible
 - Else, map the link to the dynamic network

- Start with random placement
- Route all links, in order of activation count
- Re-place VBs with the highest routing cost
 - Dynamic network congestion
 - Average route length
 - Maximum route length

- Start with random placement
- Route all links, in order of activation count
- Re-place VBs with the highest routing cost
 - Dynamic network congestion
 - Average route length
 - Maximum route length

- Start with random placement
- Route all links, in order of activation count
- Re-place VBs with the highest routing cost
 - Dynamic network congestion
 - Average route length
 - Maximum route length

- Start with random placement
- Route all links, in order of activation count
- Re-place VBs with the highest routing cost
- Repeat routing

- Start with random placement
- Route all links, in order of activation count
- Re-place VBs with the highest routing cost
- Repeat routing

Summary

Iteratively reduce routing cost Map bandwidth-critical links onto the static network

Area and Energy Characterization

- Synthesize switch and router RTL at 28 nm, 1GHz
- Power simulation with Primetime

Area and Energy Characterization

- Synthesize switch and router RTL at 28 nm, 1GHz
- Power simulation with Primetime
- Decompose power into:
 - Inactive (per-cycle)
 - Active (per-bit)

Simulation

- Integrate simulator with DRAMSim and BookSim
- Track transmitted data in switches and routers
- Estimate per-app power with activity traces:

$$E_{net} = \sum_{allocated} P_{inactive} T_{sim} + E_{flit} # flit$$

Motivation

Network Design Space

Compilation Flow

Evaluation

Area and Energy Characterization

Scalable Interconnects for Reconfigurable Spatial Architectures

Area and Energy Characterization

Scalable Interconnects for Reconfigurable Spatial Architectures

Benchmarks

Category	Application
	Dot Product
Linear Algebra	Outer Product
	Black Scholes
	GEMM
Database	TPC-H Query 6
Clustering	k-Means Clustering
	Lattice Regression
Inforanco	LSTM (RNN)
merence	GRU (RNN)
	LeNet (CNN)
	Gaussian Discriminant Analysis
Training	Logistic Regression
	Stochastic Gradient Descent

Benchmark Resource Usage

Scalable Interconnects for Reconfigurable Spatial Architectures

Evaluated Design Space

- Different network configurations
 - Static: flow control, bandwidth
 - Dynamic: VC count, flit width
 - Hybrid
- Different applications
- Different architectures
 - Pipelined (high throughput)
 - Scheduled (low throughput)

Evaluated Metrics

- Performance (Perf)
- Area efficiency (1/Area)
- Performance per area (Perf/Area)
- Power efficiency (1/Power)
- Energy efficiency (Perf/Watt)

Evaluated Metrics

- Performance (Perf)
- Area efficiency (1/Area)
- Performance per area (Perf/Area)
- Power efficiency (1/Power)
- Energy efficiency (Perf/Watt)

Reported values are the geomean across all applications, normalized to the worst network configuration.

Evaluated Metrics

- Performance (Perf) 🖘
- Area efficiency (1/Area)
- Performance per area (Perf/Area)
- Power efficiency (1/Power)
- Energy efficiency (Perf/Watt)

Hybrid Network VCs and Flit Width

Dynamic network flit width and VC count can be decreased with no performance loss.

Static vs. Dynamic vs. Hybrid

The dynamic network performs poorly on compute-bound applications due to insufficient bandwidth.

Static vs. Dynamic vs. Hybrid

The dynamic network performs poorly on compute-bound applications due to insufficient bandwidth.

Most Efficient Network Configurations

The hybrid network reduces data movement by using a dynamic network as an escape path.

Scalable Interconnects for Reconfigurable Spatial Architectures

Most Efficient Network Configurations

Pipelined Architecture

A hybrid network improves energy efficiency by **1.8***x* with performance similar to a static network.

Most Efficient Network Configurations

Pipelined Architecture

A hybrid network improves energy efficiency by **1.8***x* with performance similar to a static network. Performance varies up to **7***x* between the best and worst network configurations.

Conclusion

- Network performance correlates strongly with *bandwidth* for spatial accelerators
- Bandwidth scales more efficiently on a static network
- A hybrid (large static, small dynamic) network:
 - Eliminates place and route failure
 - Improves perf/watt

Conclusion

- Network performance correlates strongly with bandwidth for spatial accelerators
- Bandwidth scales more efficiently on a static network
- A hybrid (large static, small dynamic) network:
 - Eliminates place and route failure
 - Improves perf/watt

Thank You!

Static Network: Flow Control

End-to-end Flow Control

Back Pressure

Per-hop Flow Control

Static Network: Bandwidth

We vary the number of links between switches.

Dynamic Network

We vary the number of Virtual Channels (VCs) and flit width.

Static Network Bandwidth

3x static network bandwidth

Bandwidth strongly impacts accelerator performance.

Static Network Flow Control

Credit-Based vs. Per-Hop

Credit-based flow control has **3x** lower performance.

Accelerator Model

- Pool of compute and memory resource
- Compute:
 - SIMD pipeline, or
 - Vector processor with a small instruction window

Statically Routed Dynamic Network

- Streaming protocol requires in-order transmission
 - Can't use adaptive or oblivious routing
 - Can't drop packets
- Routes are looked up in a table at runtime
 - Route to multiple outputs for efficient broadcast links

Performance Scaling

Key Design Challenges

