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ABSTRACT
Stochastic gradient descent (SGD) is one of the most popular numer-
ical algorithms used in machine learning and other domains. Since
this is likely to continue for the foreseeable future, it is important to
study techniques that can make it run fast on parallel hardware. In
this paper, we provide the first analysis of a technique called Buck-
wild! that uses both asynchronous execution and low-precision
computation. We introduce the DMGC model, the first conceptu-
alization of the parameter space that exists when implementing
low-precision SGD, and show that it provides a way to both classify
these algorithms and model their performance. We leverage this
insight to propose and analyze techniques to improve the speed of
low-precision SGD. First, we propose software optimizations that
can increase throughput on existing CPUs by up to 11×. Second, we
propose architectural changes, including a new cache technique we
call an obstinate cache, that increase throughput beyond the limits
of current-generation hardware. We also implement and analyze
low-precision SGD on the FPGA, which is a promising alternative
to the CPU for future SGD systems.
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Algorithm 1 Stochastic gradient descent
Require: Initial model w ∈ Rn , input dataset x ∈ Rn×m loss

function f , and step size η ∈ R.
1: for k = 1 to NumPasses do
2: for i = 1 tom do
3: Compute a gradient estimate: д = ∇f (w ;xi )
4: Update the model:w ← w − η · д
5: end for
6: end for
7: return w

1 INTRODUCTION
Stochastic gradient descent (SGD) is a ubiquitous optimization algo-
rithm used in a wide variety of applications, notably as part of the fa-
mous backpropagation algorithm for training neural networks [4, 6,
42]. SGD and its variants form a critical component of enterprise ma-
chine learning systems, such as MLbase [47], Project Adam [7], and
Google Brain [24]. Additionally, it is used in finance [13] and other
analytics domains, in systems such as GraphLab [30], MadLib [17],
which is used by Cloudera Impala and Pivotal, and Vowpal Wab-
bit [2], which is developed at Microsoft. Since these billion-dollar
industries depend on dataflows which rely in part on, and are often
bottlenecked [5, 56] by, SGD, it is important for systems designers
to study techniques to make SGD run efficiently.

Concretely, SGD is used for solving optimization problems, wherein
the goal is to find a model vector w that minimizes a given loss
function. As shown in Algorithm 11, it operates by updating the
model vectorw repeatedly in a sequential loop based on vectors xi
from an input dataset.

In order to enhance the performance of SGD, it is important to
consider both the current properties and the design trajectory of
hardware systems. Over the past decade, due to the breakdown of
Dennard scaling, computer hardware has been trending towards
more parallel, specialized architectures [49]. Unfortunately, despite
the simplicity of its update rule, Algorithm 1 is a sequential algo-
rithm, so it is unlikely to perform well on this parallel hardware—
and generic compiler and architectural techniques cannot fix this
problem because they cannot alter the semantics of the algorithm.
To address this, it is common to consider variants of SGD which
are modified to run in parallel [36].

In this paper, we analyze the performance of a new SGD variant
that combines parallel asynchronous execution with low-precision
computation, a technique called Buckwild! [11]. In Buckwild!,
1Practical SGD applications differ from Algorithm 1 in that the step size η typically
decreases over time. Since this and other minor changes do not significantly affect the
hardware behavior of SGD, we will not discuss them further in this paper.
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multiple worker threads execute the inner loop of Algorithm 1 (lines
2-5) asynchronously without locking; this exploits multi-core paral-
lelism. Also, the real numbers in Algorithm 1 are represented by
low-precision fixed point numbers2, which enables higher memory
throughput and better utilization of SIMD parallelism.

Despite Buckwild!’s promising benefits in terms of improving
the parallelism and memory throughput of SGD, both these tech-
niques cannot be used naively, since they change the semantics
of the original algorithm. In order to apply them, we need to be
confident that the modified algorithm will still produce a useful an-
swer. There are reasons to think that the modified algorithm will be
error-prone: the low-precision computation introduces round-off
error and the asynchronous execution may produce race condi-
tions. Fortunately, several recent papers that analyze asynchronous
SGD [31, 36] and low-precision SGD [9, 11, 14] show, both empir-
ically and theoretically, that this extra round-off error often does
not significantly impact the quality of the output.

Unfortunately, just knowing that low-precision SGD is a valid
strategy is not enough. There are many choices that must be made
when implementing this algorithm and when designing hardware
for it. These decisions include setting the precision of the variables,
distributing work across parallel resources, and choosing how to
perform the rounding when we lower the precision of a number.
Changing these implementation details for a Buckwild! SGD algo-
rithm effects a trade-off between the speed at which the hardware
can execute an update step and the quality of the resulting solution.
We call these metrics hardware efficiency and statistical efficiency, re-
spectively.3 While there has been significant theoretical analysis of
the statistical efficiency of asynchronous low-precision algorithms,
their hardware efficiency has not been explored in depth—this is
particularly true for low-precision computation, which has received
less attention from SGD researchers and practitioners than asyn-
chronous execution. As we will show, the decisions made when
implementing a Buckwild! algorithm can have a significant effect
(up to 11×) on its hardware efficiency, and the optimal choices
can depend on the structure of the input dataset—for example, the
sparsity of the input can affect the optimal design. There has been
no principled way of reasoning about these decisions, and past
analyses have focused on a particular problem or hardware target
in ad hoc ways.

To address this issue, we introduce a principled way of relaxing
precision in SGD, called the DMGC model. Specifically, “DMGC”
is an acronym that identifies four different ways in which arith-
metic precision can be reduced: by quantizing the input dataset
(xi ), the model (w), the intermediate gradient values, or the inter-
worker communications. These ways can be combined arbitrarily
in a particular implementation of SGD, and the best-performing
system often uses different levels of precision for the different cat-
egories. The DMGC model serves as both a taxonomy of existing
low-precision implementations, and a way of reasoning about the
trade-off space that exists when designing new systems. Addition-
ally, it gives us predictive power, as with a roofline model [53], to
estimate the performance of an algorithm by classifying it as being
either bandwidth-bound or communication-bound.
2Rather than by 32- or 64-bit floating point numbers as is standard.
3This nomenclature follows previous work [15, 56] which examined this trade-off in a
different setting.

Leveraging insight from the DMGC model, we analyze four soft-
ware techniques that can be used to produce highly efficient Buck-
wild! implementations on modern CPUs: (1) hand-optimizing the
SIMD code, (2) using fast random number generation, (3) disabling
prefetching, and (4) combining multiple iterations into a single
mini-batch update. To improve the performance of this algorithm
beyond what is possible in software, we also suggest two hardware
enhancements: introducing new compute instructions, and relax-
ing cache coherence by randomly ignoring invalidate requests, a
strategy we call an obstinate cache. To further study how architec-
ture relates to SGD performance, we test Buckwild! on the FPGA,
which is a promising alternative to the CPU for next-generation
SGD implementations.

In this paper, we study asynchronous, low-precision SGD, mak-
ing the following contributions:

• We introduce the DMGC model, and show how it can be
used to estimate the throughput of a Buckwild! imple-
mentation with a roofline-like model.

• We describe four software optimizations that can be used
to improve the performance of Buckwild! SGD on current-
generation CPUs by up to 11×.

• We suggest two hardware enhancements, including a new
strategy for cache coherency we call an obstinate cache,
that can improve the performance of this algorithm beyond
what is possible in software. We also illustrate the benefits
of low-precision computation on the FPGA, and present
useful design techniques.

• We evaluate our methods in several real settings, includ-
ing deep learning. We show that, with our suggested op-
timizations, using low-precision can produce near-linear
speedups (up to 4×) over full-precision.

2 BACKGROUND AND RELATEDWORK
In this section, we will describe asynchronous low-precision SGD
in detail, and discuss prior work related to this algorithm. SGD
is used for minimizing a function that can be written as a sum of
many components, specifically

minimize:
m∑
i=1

f (w ;xi ) subject to:w ∈ Rn . (1)

To simplify our analysis throughout this paper, we will focus on
a particular version of this problem, logistic regression [52]: given
data examples (xi ,yi ) ∈ Rn × {−1, 1}, we want to solve

minimize:
m∑
i=1

log(1 + e−yix
T
i w ) over:w ∈ Rn .

For this problem, the SGD updates are of the form

w ← w + ηyixi
(
1 + exp(yi

DOT

xTi w )
)−1

AXPY

.

From a hardware perspective, the cost of this step will be domi-
nated by the two vector operations, a dot product and an AXPY
(a-x-plus-y operation); the remainder of the work is in negligible
scalar computations. Many other problems can be solved using
SGD with a single dot-and-AXPY pair (in addition to negligible
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1 void sgd_worker(float* w, float eta , bool& running) {
while(running) {

3 struct { float* x; float y; } ex=get_example ();
// compute the dot product of ex.x and w

5 float xi_dot_w =0.0;
for(long k=0; k<N; k++) xi_dot_w +=ex.x[k]*w[k];

7 // do the logistic regression scalar computation
float scale_a=eta*ex.y/(1.0+ exp(ex.y*xi_dot_w));

9 // update the model with an AXPY
for(long k=0; k<N; k++) w[k]+=ex.x[k]*scale_a;

11 } }

Figure 1: C++ code for SGD on logistic regression.

scalar computation), including linear regression and support vector
machines (SVM). Because of this, SGD on logistic regression has a
hardware efficiency that is representative of SGD on any problem in
this class. Even problems with more complicated updates will typi-
cally have performance similar to logistic regression, since more
complicated SGD steps typically consist of similar linear algebra
operations (such as matrix multiply).

The computational structure of SGD can also vary based on
whether the input dataset is dense or sparse. Dense datasets have
examples xi that are represented simply as a array of n numbers,
while sparse datasets have examples xi with mostly zero entries,
so it is cheaper to instead store a list of only the nonzero entries.
Since dot and AXPY algorithms on dense and sparse vectors differ
substantially in terms of their memory access patterns, it is natural
that the overall performance of SGD for these two cases will also
differ. Throughout this paper we will consider dense and sparse
datasets separately.

Next, wewill describe asynchronous execution and low-precision
computation individually, using a simple implementation of SGD.
For dense logistic regression, sequential, full-precision SGD might
be implemented as in Figure 1.

Asynchronous execution. Asynchronous execution is a widely-
used technique also known as Hogwild! [36] (on which the Buck-
wild! name was based). Hogwild! SGD could use the same code as
in Figure 1; it differs from sequential SGD in that multiple threads
each run sgd_worker in parallel, sharing a single copy of the model
vector w. Because the model is accessed without locking, race con-
ditions can occur if one thread writes the model w while another
thread is computing its own update. On well-behaved problems,
Hogwild! is known to both “achieve a nearly optimal rate of conver-
gence” (statistical efficiency) and run “an order of magnitude” faster
than methods that use locking (hardware efficiency) [11, 31, 36].
This impressive speedup has inspired a flurry of research into
asynchronous SGD across problem domains, including deep learn-
ing [37], PageRank approximations [34], and recommender sys-
tems [54]. Fast asynchronous variants of other algorithms have also
been proposed, such as coordinate descent [27, 28] and Gibbs sam-
pling [10, 19]. Hogwild! has been successfully applied in industry,
such as in Microsoft’s Project Adam [7].

Low-precision computation. Reduced-precision SGD can be im-
plemented using the code in Figure 1 by simply changing each
red float data type to a low-precision, fixed-point type, such as
int8_t. Additionally, casts would need to be added to lines 6 and 10

to convert the low-precision numbers safely to and from float. Be-
cause the conversion in the AXPY operation decreases the number
of bits used to represent the numbers, it introduces round-off error,
which is especially significant when the precision of the model is
small. Additional round-off error can occur implicitly at the start
of the algorithm, when the dataset is rounded to a low-precision
type.While low-precision SGD has received somewhat less research
attention than asynchronous SGD, basic results that characterize
its statistical efficiency are still known [11]. Additionally, several
systems have been suggested for using low-precision arithmetic
for deep learning and other problems [9, 14, 45, 46, 48]. Later, we
will examine these systems in more detail in terms of our DMGC
model.
Other settings. While we focus here on the performance of SGD
on a single CPU or FPGA, much previous work exists that ana-
lyzes (full-precision) SGD in other settings. For example, Zhang
and Ré [56] analyzed the trade-offs that exist when running asyn-
chronous SGD on non-uniform memory access (NUMA) machines.
Similar work exists for algorithms running on clusters [15] and
on GPUs [20, 57]. When designing a system that uses SGD, it is
important to understand both how the large-scale structure of the
available compute resources affect the performance, as well as how
optimizations can improve the performance of individual chips.
For this reason, we believe that our contributions in this paper,
especially when combined with previous work, will be useful to
system designers.

3 THE DMGC MODEL
In this section, we describe our main conceptual contribution, the
DMGC model, and describe how low-precision systems described
in previous work can be classified thereby. The main idea behind
the DMGC model is that the real numbers4 used by a parallel SGD
algorithm can be separated into four distinct groups: numbers used
to store the dataset, numbers used to represent themodel, numbers
used as intermediate values while computing the gradients, and
numbers used to communicate among the several worker threads.
This categorization is natural because these numbers are both used
differently by the algorithm and stored differently within the mem-
ory system, and so making them low-precision will have different
effects on performance.
Dataset numbers. Dataset numbers are those used to store the
input dataset, the xi in (1) or the examples ex from Figure 1. As
inputs to the algorithm, they are constant, and they compose the
vast majority of data in the process’s live data at any given time.
Since there are so many of them and they are reused only infre-
quently, dataset numbers are typically stored in DRAM, and we
focus our analysis on problems for which this is the case5—such as
those targeted by popular in-memory ML frameworks, including
SciKit Learn [39]. Because dataset numbers are constant inputs,
to make them low-precision we need to quantize them only once:
4Throughout this section, we use the word “numbers” to refer specifically to values
that represent real numbers in the algorithm, and not to values that represent indexes
or counters.
5For very small problems, the dataset could be stored in the last-level cache, and for
very large problems it would not fit in DRAM and so need to be stored on disk, but
since the trade-off space is very different in these rare cases we do not address them
here.
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either at the beginning of the algorithm, if the input is stored on
disk as full-precision floats; or before the algorithm runs, if we
are given a low-precision version of the input dataset to load. For
some applications, such as recommender systems and compressed
sensing where the input dataset is naturally quantized, this can be
done without any loss of fidelity; however, in general quantizing
the dataset can affect the statistical efficiency of the algorithm. We
call the precision of the dataset numbers, measured in bits, the
dataset precision.

When solving a dense problem, the input dataset consists only
of dataset numbers; however, when solving a sparse problem, the
dataset also contains values that encode the indexes of the nonzero
entries of the example vectors. These integer values also can be
made low-precision6, and since this does not change the semantics
of the input dataset, doing so incurs no loss of statistical efficiency.
We call the precision of these values the index precision.

Using low-precision for the dataset is advantageous from a hard-
ware efficiency perspective. Since most numbers read from DRAM
are dataset numbers, representing them in low-precision both de-
creases the amount of DRAM bandwidth needed to execute the
algorithm, and decreases the amount of pressure on the entire cache
hierarchy. This will improve performance when SGD is memory
bound.
Model numbers. Model numbers are those used to store the
model, thew in (1) and Figure 1. In general, model numbers include
any mutable state that persists across iterations. Unlike dataset
numbers, model numbers are modified continuously throughout
the algorithm, and while they make up only a small fraction of the
process’s live data, they represent a significant part of its working
set since every model number is frequently reused. Because of this,
being able to effectively cache the model is important for achieving
fast execution, and the model numbers are typically all stored in
the last-level cache; we focus on problems for which this is possible.
We call the precision of the model numbers the model precision.

In order to make the model numbers low-precision, it is neces-
sary to quantize by rounding every time the model is written, i.e.,
every time the AXPY on line 4 of Algorithm 1 is executed. There
are two different ways we can do this rounding. The first is stan-
dard rounding, also known as nearest-neighbor or biased rounding,
which rounds to the closest number that is representable in the low-
precision model type. The second, unbiased rounding, randomly
rounds up or down in such a way that the expected value of the
quantized output is equal to the input. Unbiased rounding, which
has been used in some [14] previous work on low-precision SGD,
must be implemented using a pseudorandom number generator
(PRNG), which decreases its hardware efficiency; however, it typi-
cally yields more accurate solutions (higher statistical efficiency)
than biased rounding. Later, in Section 5.2, we will show how by
using an extremely fast PRNG we can make the hardware efficiency
cost of unbiased rounding negligible for many applications.

Using a low-precision model has similar advantages to using
a low-precision dataset. Having smaller model numbers puts less
pressure on the cache hierarchy, and may allow a model to fit in
6For model sizes too large to be indexed by the low-precision type, this can be achieved
by storing the difference between successive nonzero entries. Since this part of the
implementation did not significantly impact throughput in our experiments, we do
not discuss it further in this paper.

cache when it otherwise would not. Additionally, computing the
gradient updates on the CPU can be cheaper with a lower-precision
model, since more SIMD parallelism can be extracted for operations
producing 8-bit or 16-bit numbers.

Gradient numbers. Gradient numbers are those used as interme-
diate values while computing the update step, such as xi_dot_w
and scale_a in Figure 1. Unlike with the dataset or the model,
which typically have a single precision, it often makes sense to
use different precisions for different gradient numbers in an algo-
rithm. Depending on how they are used, making these numbers low-
precision may or may not have an effect on statistical efficiency, and
their effect on hardware efficiency is similarly context-dependent.

Communication numbers. Communication numbers are those
used to communicate among worker threads in a parallel algorithm.
Sometimes, this communication is done explicitly, in which case we
call its precision the communication precision. However, in many
implementations, such as in Figure 1 and in standard Hogwild!,
communication is not explicit; instead, the coherence protocol of the
CPU cache hierarchy is employed to communicate asynchronously
between cores. In this case, there are no communication numbers—
and inasmuch as they exist, they will have the same precision as
the model, since they are just model numbers communicated by
the cache coherence protocol.

DMGC signatures. Using the four classes of numbers outlined
above, we can classify a particular implementation of SGD in terms
of the precision of its numbers within each class. This classification,
which we call a simplified DMGC signature, is written as

Ddataset prec
[
i index prec

]
Mmodel precGgradient precCcomm prec.

The i term is included only if the problem is sparse, and the [i]
notation means the problem could possibly be sparse. For example,
a dense implementation that uses an 8-bit dataset, a 16-bit model,
and explicitly computes and communicates with 32-bit floats would
have signature D8M16G32C32.

The information in a DMGC signature is enough to model the
statistical efficiency of an algorithm from first principles by using
techniques from previous work like De Sa et al. [11]. However, as it
is a simplified model, this type of signature does not encode every-
thing we want to represent about an algorithm from a hardware
perspective. To address this, we augment the simplified signature
with rules that capture more information about precision:

• Since floating-point and fixed-point numbers differ, we
suffix an f to the size of floating-point numbers.

• When any explicit synchronization is done among work-
ers, we add a s subscript to the C; absence of an s implies
asynchronous execution. We can omit the C entirely if, as
in Hogwild!, the algorithm relies entirely on the cache
hierarchy for implicit communication.

• For simplicity, we omit the G term entirely if the gradient
computation is equivalent to using full-precision numbers
(i.e. no fidelity is lost in intermediate values). Similarly, we
can leave out the D andM terms when the algorithm uses
full-precision arithmetic for those numbers.

Using these rules, we can assign any implementation a DMGC
signature. For example, standard sparse Hogwild! has signature
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Paper DMGC Signature

Savich and Moussa [45], 18-bit G18

Seide et al. [46] G1C1
s

Courbariaux et al. [9], 10-bit G10

Gupta et al. [14] D8M16

De Sa et al. [11], 8-bit D8M8

Table 1: DMGC signatures of previous algorithms.

D32f i32M32f and a dense Buckwild! implementation using 8-bits
for the dataset and the model and unbiased rounding has signature
D8M8.

3.1 Classifying previous implementations
In this subsection, we will briefly discuss some low-precision sys-
tems implemented in previous work, and how they can be under-
stood under the DMGC model. First, we analyze Seide et al. [46], in
which the gradients are “quantized...to but one bit per value” and
these gradient values, rather than model values, are used to com-
municate synchronously among the workers. Since it maintains a
full-precision dataset and model, which includes a full-precision
representation of the quantization error that is carried forward
across iterations, this algorithm has DMGC signatureG1C1

s . Note
that this signature gives us a clearer understanding of the precision
used in this algorithm than the title of the paper, which only calls it
“1-Bit” SGD—but does not specify which numbers are so quantized.

Another implementation from previous work is SGD using low-
precision multiplications, suggested in Courbariaux et al. [9]. The
most successful implementation analyzed by the authors uses 10-bit
multipliers, but full-precision accumulators; since the inputs and
outputs to the multipliers are intermediate numbers, its DMGC
signature is just G10.

In Table 1, we list the DMGC signatures of several algorithms
from previous work. While most of these papers considered several
ways to set the precision, none highlight the full trade-off space
described by the DMGC model.

4 MODELING PERFORMANCE
In this section, we describe how the DMGC model can be used to
approximate the performance of well-optimized SGD on parallel
hardware. Throughout the rest of this paper, we will represent
hardware efficiency in terms of the dataset throughput, the rate at
which data numbers are processed by the algorithm, measured in
giga-numbers-per-second (GNPS). For logistic regression where
the sizes of the dataset vectors and the model vector are the same,
the dataset throughput is equal to the rate at which iterations can
be performed multiplied by the model size.

In order to explore the trade-offs generated by varying the pre-
cision of SGD, we tested our best general implementations7, using

7From the optimizations we will discuss in Section 5, we used only hand-optimized
SIMD and XORSHIFT rounding; these are the optimizations that are generally applica-
ble, regardless of the problem or model size.

DMGC Signature dense T1 sparse T1

D32f [i32]M8 0.203 0.103
D32f [i32]M16 0.208 0.080
D32f [i32]M32f 0.936 0.101
D8[i8]M32f 0.999 0.089
D16[i16]M32f 1.183 0.089
D16[i16]M16 1.739 0.106
D8[i8]M16 2.238 0.105
D16[i16]M8 2.526 0.172
D8[i8]M8 3.339 0.166

Table 2: Base sequential throughputs used for simplified
model, in units of giga-numbers-per-second (GNPS), mea-
sured on Xeon E7-8890 (throughputs vary by CPU).
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Figure 2: Bounds for throughput as model size changes.
Dashed line represents the setting where the model is too
large to fit in the L3 cache.

the precisions listed in Table 2, for both dense and sparse (3% den-
sity8) artificially-generated datasets9 of model sizes n (i.e.w ∈ Rn )
ranging from 28 to 226.

Changing the model size has a non-uniform effect on throughput,
which we have illustrated in Figure 2. For large models (roughly
those larger than 256K in our experiments) changing the model size
has little effect on performance. In this regime, the throughput is
bandwidth-bound, since its performance is limited by the memory
bandwidth of the individual cores. On the other hand, for small
models, decreasing the model size causes a degradation in perfor-
mance. In this regime, the throughput is communication-bound; its
performance is limited by the latency at which updates, which hap-
pen more frequently for smaller model sizes, can be sent between
the cores.
8Our choice of density is arbitrary, and similar effects would be observed across a
range of densities.
9We generated the datasets by sampling from the generative model [35] for logistic
regression, using a true model vectorw∗ and example vectors xi all sampled uniformly
from [−1, 1]n .
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Figure 3: Comparison of real measured dataset throughput (giga-numbers-per-second) with throughput predicted by the per-
formance model, for multiple threads and precisions, and for sparse and dense data.

We can use this intuition to model the throughput of Buckwild!
as parameters are changed. Our performance model has the follow-
ing properties: (1) varying the thread count results in a throughput
that follows Amdahl’s law [3],

Tt =
T1

((1 − p) + p
t
, (2)

where T denotes the throughput, t is the number of threads, and p
is the parallelizable fraction of the task; (2) the base throughputT1 is
solely a function of the DMGC signature; and (3) the parallelizable
fraction p is solely a function of the model size. For the hardware
we used, a Xeon® E7-8890 v3 with 18 physical cores running at
2.50GHz, we found that a good approximation for p was

p = min
(
0.98, 0.15 · log

(
model size

256

))
. (3)

The first term here describes the fixed bandwidth bound, which
is independent of the model size. The second term describes the
communication bound, which manifests as a decrease in the par-
allelizable fraction of the algorithm because increasing the thread
count makes communication more frequent. This assignment of p,
together with the base throughputs T1 listed as a function of the
DMGC signature in Table 2, seems to yield valid predictions for
both dense and sparse problems, across all well-optimized SIMD
implementations we tried.

Figure 3 compares the measured throughputs of our Buckwild!
implementations with the predictions of the performance model,
for a selection of thread counts. More broadly, for both dense and
sparse datasets, for 90% of the tested algorithm parameters, the

prediction was within 50% of the observed throughput. It is perhaps
surprising that amodel with so few parametersmanages to track the
measured performance reasonably accurately. However, this makes
sense when we consider that lowering the precision is done with
the goal of extracting SIMD parallelism—that is, parallelism within
a single core—and so effects that operate across many cores, such
as the thread count and the model size (which affects performance
primarily through cache coherence effects), should not interact
strongly with the precision.

Because of this, we can roughly evaluate the effect of chang-
ing the precision, even across a variety of model sizes and thread
counts, by just looking at the base throughput number in Table 2. In
particular, we can gauge the performance against the best-case the-
oretical speedup, wherein the throughput is inversely proportional
to the number of bits; we call this linear speedup. The data in Table 2
show that linear speedup is achieved for dense Buckwild!, and that
while sparse SGD shows less than linear speedup as the precision
is decreased, D8i8M8 Buckwild! is still the fastest scheme. Since
these base throughputs are directly proportional to the throughputs
predicted by (2), the illustrated speedups are valid across all model
sizes.

5 SOFTWARE OPTIMIZATIONS
While there are known techniques for writing efficient Hogwild!
implementations [56], there are additional non-obvious optimiza-
tions that increase throughput in the low-precision case. In this
section, we present two low-precision-specific optimizations that
are generally applicable, and which were necessary to achieve the
performance described in Section 4. First, we will show that care
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is needed when vectorizing low-precision SGD, and that hand-
vectorized code can be significantly faster than what a compiler
would generate. Second, we describe how unbiased rounding can
be done with minimal effect on hardware efficiency by using very
high-throughput pseudorandom number generators. We also in-
troduce two additional techniques that can further improve the
performance when the model size is small (and performance is
dominated by cache effects).

5.1 Efficient SIMD computations
A major goal of using low-precision computation is to leverage the
ever-widening SIMD capabilities of modern CPUs. In this subsec-
tion, we discuss optimizations that improve performance on CPUs
that use the AVX2 SIMD instruction set extensions, the newest
SIMD extension available on Xeon processors. Unfortunately, on
AVX2, a straightforward C++ implementation doesn’t fully utilize
the capabilities of the processor for lower precisions even when
compiled by gcc with -Ofast, the highest optimization level. Worse,
other compilers (we tested icc and clang) and frameworks (we tested
OpenMP) do not seem to significantly improve the quality of the
generated code. A hand-optimized implementation that implements
the dot and AXPY operations using AVX2 intrinsics—effectively
programming in assembly—is necessary to achieve the performance
reported in Section 4.

Figure 4a compares the performance of our hand-optimized im-
plementation with GCC’s compilation of generic code. As can be
seen, GCC consistently underperforms by an significant factor.
Since the AVX2 optimizations used in the hand-optimized version
don’t change the semantics of the algorithm, its speedup is essen-
tially free: it doesn’t involve any trade-off with statistical efficiency.
The DMGC signatures for which it was effective to hand-optimize
the implementation are listed in Figure 4c, along with the average
(across models and thread counts) speedups that resulted.

To understand this performance gap, we will analyze how the dot
operation is implemented in both the GCC and the hand-optimized
versions of 8-bit Buckwild! In the hand-optimized version, the
numerical computations are done using a fused multiply-add, in-
struction, vpmaddubsw. This instructionmultiplies two pairs of 8-bit
numbers, and accumulates the results—with no loss of precision—
into a single 16-bit number. The GCC version does not use a fused
multiply-add; instead, to dot two 8-bit SIMD vectors, it: (1) converts
the 8-bit numbers into 32-bit floats, in the process quadrupling the
size of each input and thus expanding it into four vector registers,
(2) multiplies the floating point vectors, and (3) sums the resulting
floating point numbers. Since each of these steps requires multiple
instructions, the GCC version takes almost a dozen instructions to
accomplish what the hand-optimized version does in a single in-
struction. Similar differences in instruction usage occur throughout
the code emitted by GCC, which explains the nearly 10× speedup
achieved by hand-optimizing the SIMD instructions.

This difference in performance is not simply incidental to the im-
plementation of GCC, but rather can be attributed to the language
semantics of C++. This is because in C++, directly multiplying two
8-bit integers (for example) can lead to a loss in fidelity, since it
produces an 8-bit result that could possibly overflow. To prevent
this, it is necessary to first cast the 8-bit numbers to 16-bit numbers,

and then do the multiply. This makes it impossible to write a fused
multiply-add with basic C++ constructs. Furthermore, GCC does
not optimize aggressively enough to transform the code to use the
vpmaddubsw instruction. It would be unreasonable to expect GCC,
or a similar general-purpose compiler, to perform this transforma-
tion, since sometimes (for example, the small-model-size sparse
problems in Figure 4b) it can actually lower the performance of
the code. Because of the above concerns, we recommend hand-
writing the SIMD code of the core operations of any Buckwild!
implementation.

5.2 Fast random number generation
In Section 3, we described how choosing between biased and un-
biased rounding can trade-off between statistical and hardware
efficiency. While biased rounding always maximizes hardware effi-
ciency with no regard for statistical efficiency, unbiased rounding
offers additional design decisions that determine how the random-
ness used for rounding is generated. In this subsection, we discuss
these decisions, which allow for finer-grained trade-offs between
statistical and hardware efficiency. The simplest way of implement-
ing unbiased rounding is by using the formula

Q(x) = to_low_precision(floor(x + rand())), (4)

where x is the full-precision number to round, Q(x) is the low-
precision output, floor(z) returns the largest integer smaller than
z, and rand() returns an independent random variable uniformly
distributed on [0, 1].10

The hardware efficiency of an implementation of (4) depends
primarily on how the rand function is implemented. The easiest
way to implement this in C++ is to use a pseudorandom number
generator (PRNG) available in the popular Boost library [1]. In this
implementation, a fresh random number is generated by a call to
Boost’s default PRNG (Mersenne twister [33]) every time we write
a model number: n times per iteration, where n is the model size.
Even though Mersenne twister is a fast PRNG, if it runs once every
write, it dominates the computation cost of the algorithm. Worse,
there is no obvious way to transform the Boost implementation of
the PRNG into a hand-optimized AVX2 implementation, and, as
described in Subsection 5.1, the C++ compiler is unlikely to do it
efficiently.

To improve the performance of the quantizer, we used a hand-
written AXV2 implementation of XORSHIFT [32], a very fast, but
not very statistically reliable [38] PRNG. This very lightweight gen-
erator has similar statistical efficiency to the Mersenne twister, as
shown in Figure 5a, while significantly improving upon its hard-
ware efficiency, as shown in Figure 5b. Unfortunately, since the
rest of the computations required by low-precision SGD are so
cheap, running even a very lightweight generator like XORSHIFT
on every write still makes up a significant fraction of the compute
instructions of the algorithm. This means that this strategy still has
much lower hardware efficiency than biased rounding.

A third strategy that further improves the performance of the
quantizer is to share randomness among multiple rounded numbers.
In this design, the calls to the rand function in (4) are no longer

10For simplicity, we are here assuming that we are quantizing to integer precision;
rounding to fixed-point numbers with different quanta is a straightforward extension.
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Figure 5: The effects of random number generation and new 4-bit SGD on hardware and software efficiency.

independent; rather, it will return the same number some number of
times before eventually running the XORSHIFT PRNG to generate
a fresh number.11 Despite the lack of independence, the quantized
output for each element remains unbiased, and the method has
surprisingly good statistical efficiency; as shown in Figure 5a it can
be close to the other two strategies. Furthermore, since the PRNG
is no longer called at each write, its cost is amortized, allowing
us to match the hardware efficiency of the unbiased version in
some cases, as shown in Figure 5b. This strategy is used to achieve
the performance numbers reported in Section 4. One benefit of
this approach is that we can expose a smooth trade-off between
statistical and hardware efficiency by changing the frequency at
which the PRNG is run.

5.3 Turning off prefetching
So far, the optimizations we have discussed in this section have
been focused on improving the memory bandwidth and SIMD paral-
lelism, and thereby the base throughput, of the algorithm. However,
as Figure 3 illustrates, when the program is communication-bound,
the throughput is almost an order of magnitude less than when
11In our tests, we ran the vectorized XORSHIFT PRNG once every iteration to produce
256 fresh bits of randomness, which we shared for rounding throughout the AXPY
operation.

the model is large. This decrease in performance is attributable
to cache effects: when the model is small, lines in the L2 caches
that store model numbers are more frequently invalidated, lead-
ing to processor stalls as the cores must wait for data from the
shared L3. For the remainder of this section, we will discuss two
techniques that can improve the throughput when the algorithm is
communication-bound.

One way to improve throughput that requires minimal program-
mer effort is to simply turn off the hardware prefetcher. For pro-
cessors using recent Intel microarchitectures, this can be achieved
by setting bits in the model specific register (MSR) 0x1A4 [50].12
While this effect may seem surprising, it has been known to happen
for some applications [26]. Since the hardware prefetcher typically
increases the throughput of thememory subsystem, it is understand-
able when we consider the facts that: (1) the additional memory
operations inserted by the prefetcher consume a significant amount
of bandwidth; and (2) the cache lines loaded by the prefetcher are
often invalidated before they can be used.

12Note that while this MSR provides more fine-grained control of which features of
the prefetcher to turn on and off, for all model sizes we tried it was optimal to either
turn all the features off (no prefetching at all) or keep them all on (the default setting).



Understanding and Optimizing Asynchronous Low-Precision SGD ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

Figures 6a and 6b report the throughput that can be achieved
by turning off hardware prefetching for dense and sparse prob-
lems, respectively. As can be seen, significant speedups of up to
150% can occur. Furthermore, our experiments showed that turning
off the prefetcher does not have a significant effect on statistical
efficiency—in fact, the distributions of the quality of the output
were indistinguishable from one another. Note that we did not need
to change any of our code to do this: they were measured using
the same executable and differing only in the assigned value of the
prefetch control MSR. This means that this technique improves
hardware efficiency essentially for free (requiring no programmer
effort), and so we recommend that SGD implementers always try
disabling the prefetcher when model sizes are small.

5.4 Increase the mini-batch size
Mini-batch stochastic gradient descent is a straightforward variant
of SGD in which gradients from multiple dataset examples are
summed, resulting in an update rule like

w ← w − α (∇f (w ;xi ) + ∇f (w ;xi+1) + · · · + ∇f (w ;xi+B−1))

Here, B, the mini-batch size, is a hyperparameter that determines
how many examples will be used to compute each model update
(for standard SGD, the mini-batch size is just B = 1). Since more
compute work is done for each time the model is written, increas-
ing the mini-batch size will amortize the cache effects caused by
writing to a small model. Specifically, the model is written less fre-
quently, and so L2 cache lines will be invalidated correspondingly
less frequently.

Figure 6d illustrates the speedups that can result from using a
larger mini-batch size. For very large mini-batch sizes, the through-
put for smallermodels approaches that of largermodels; this scheme
effectively increases the parallelizable fraction p of the algorithm.

Unlike some other optimizations, increasing the mini-batch size
can effect the statistical efficiency. This relationship is often problem
dependent and difficult to capture. For logistic regression, Figure 6e
shows the measured statistical efficiency as the mini-batch size
is changed. These results suggest that an empirical or theoretical
analysis of the accuracy is needed to decide how large the mini-
batch size can be set before statistical efficiency degrades.

6 HARDWARE OPTIMIZATIONS
In this section, we show how we can improve throughput with
two hardware changes that can be used in combination with the
software optimization techniques presented in Section 5. The first
proposed change affects compute by adding new ALU instructions,
while the second affects memory by proposing a new way of re-
laxing the cache coherence protocol. In contrast to previous work
on new ISAs for neural network accelerators [29] and relaxed con-
sistency shared memory [51], our changes are simple and could
be added to any existing architecture. It is our hope that these or
similar hardware changes may actually be implemented in future
CPU generations.

6.1 New vector ALU instructions
The performance improvements from hand-optimized SIMD code
depend on the existence of efficient instructions like the fused-
multiply add described in Section 5.1. Were this and similar in-
structions not to exist in AVX2, it would be impossible to improve
over the code generated by GCC, which means that fully optimized
Buckwild! systems would run significantly slower. In this subsec-
tion, we ask the opposite question: can we add compute instructions
that will improve the throughput of low-precision SGD?

The most obvious new ALU instructions to add would be ones
that allow the inner loops of the dot and AXPY operations to be
computed using fewer instructions. Here, we focus on the D8M8

case—the one for which instructions are most lacking on current
architectures—and propose two specific instructions to do this: one,
for dot, which vertically multiplies signed 8-bit integer vectors,
producing 16-bit intermediate values, which it then horizontally
adds in groups of four to produce 32-bit floating point numbers;
and another, for AXPY, which multiplies an 8-bit vector by an 8-bit
scalar, producing 16-bit intermediate values, which it then adds to a
hardware-generated pseudorandom 8-bit vector, before truncating
to produce an 8-bit output. These instructions are sufficient to
compute the inner loop bodies of dot and AXPY with one and two
instructions, respectively, so they represent an upper bound on the
speedup that can result from new ALU instructions.

In order to evaluate these instructions, we ran test programs on
our Xeon processor by using an existing ALU instruction (vpmaddwd
for the new dot instruction, vpmullw for the AXPY instruction)
as a proxy in place of the new instruction in our code. By doing
so, we are supposing that our new ALU instruction will have the
same latency as the chosen proxy. If this is the case, then since the
proxied instruction only operates on numbers, and does not affect
the control flow of the program, the runtime of the proxy program
will be exactly the same as the runtime of the program with the new
instruction. Thus, while the proxy program produces invalid output,
it lets us accurately measure the runtime. In our experiments, these
new instructions consistently improved throughput by 5% − 15%.

We can also consider another type of new ALU instruction: those
which enable us to run at different precisions than we could oth-
erwise use. Specifically, we are interested in running 4-bit SGD,
that is, D4M4. This choice is infeasible on current-generation CPUs
because AVX2 does not support any kind of 4-bit arithmetic. We
used the same methodology as before to test the performance of a
hypothetical 4-bit Buckwild! implementation, assuming the exis-
tence of 4-bit multiply, add, and fused-multiply-add instructions, all
of which have the same latency characteristics as their 8-bit equiv-
alents (which we used as proxies for our experiments). Figure 5c
compares the throughput of this dense D4M4 implementation to
D8M8; across most settings, it is about 2× faster (although it often
affects statistical efficiency).

6.2 Relaxing coherence: the obstinate cache
In Sections 5.3 and 5.4, we explored software techniques that can
address the deleterious cache effects that occur when the algo-
rithm is communication-bound. It is natural to consider hardware
changes that can further ameliorate these harmful cache effects.
Here, we propose a simple change that relaxes the coherence of
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Figure 6: Effects of turning off prefetching, changing mini-batch size, using and obstinate cache, and running on an FPGA.

the cache hierarchy—for only those cache lines used to store model
numbers13—by just randomly ignoring some fraction of invalidates.
Under this strategy, which we call an obstinate cache because it
obstinately refuses to respond to invalidate requests, whenever
a cache receives a signal that would normally cause it to change
a model cache line to the invalid (I) state, with some probability
q (the obstinacy parameter), using a hardware PRNG, it instead
retains that cache line in the shared (S) state. While this technique
makes the caches incoherent (which causes race conditions), we
can show that cache incoherence has a negligible effect on statisti-
cal efficiency by using the same analysis that shows that the race
conditions from asynchronous execution only marginally affect
statistical efficiency.

In order to evaluate this technique of relaxed coherence, we ran
experiments using ZSim [44], a popular architectural simulator that
excels at modeling memory hierarchies. Using ZSim, we simulated
an 18-core processor with the same compute characteristics and
approximately the same cache characteristics as our 2.5 GHz Xeon
processor: a 32 KB 4-cycle latency L1 cache, 256 KB 12-cycle latency
L2 cache, and a 45MB 36-cycle latency shared L3 cache.We used the
same code used in Section 4, except that since ZSim does not model
a hardware prefetcher, we manually added software prefetching.
While the simulation does not model congestion, it does model
a coherency protocol (MESI) and so it does exhibit a slowdown
caused by invalidates as the model becomes smaller, as shown

13The obstinate cache behavior could be enabled per-page based on whether the user
sets a flag in the page table.

in Figure 6c. The same figure illustrates how using an obstinate
cache can improve throughput: for values of q around 50%, the
cost of running with a small model disappears. On real hardware,
which may experience additional negative effects from invalidates
(such as bus congestion and shared L3 cache bandwidth limitations)
that are not modeled by the simulator, we expect the effect of the
obstinate cache will be even more dramatic. Furthermore, as shown
in Figure 6f, we observed that the obstinate cache has no detectable
effect on statistical efficiency, even when q is as high as 95%. These
results suggest that hardware that allows for software-controlled
relaxation of the cache coherence, even in such a course-grained
way as the obstinate cache, could be a useful tool for achieving
good performance for low-precision SGD.

7 EVALUATION
In this section we will display the effects of our ideas on some
popular problems. First, we will demonstrate that Buckwild! can
make deep learning more efficient. Almost all deep learning sys-
tems, including CNNs [23] and ResNets [16], are bottlenecked by
the training of convolution layers; this has been verified experimen-
tally [8]. For this reason, we use the throughput of a convolution
layer as a proxy for the hardware efficiency of the system. We mea-
sured this throughput for a convolution layer14 running on images
of size 227× 227× 3 from the ImageNet dataset [43]. We expect that
low-precision would yield a linear increase in throughput. Figure 7a

14The layer we studied is structured identically to the first convolution layer from
Caffe’s AlexNet example [18].
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Figure 7: Effects of running on an FPGA, and validation of approach via alternate applications to convolutional neural network
layers (the bottleneck for most systems) and kernels SVM.

shows that this is in fact the case, and that our optimizations are
necessary to achieve this speedup.

Next, we evaluate the effect of low precision on statistical effi-
ciency for neural networks. We study this effect by measuring the
test error for LeNet, a successful CNN architecture [25]. To do this,
we modified Mocha [55], a deep learning library, to simulate low-
precision arithmetic of arbitrary bit widths. Since this simulation
was too slow to use ImageNet, we tested on the smaller MNIST [12]
and CIFAR10 [22] digit classification tasks. Convolution layers for
these datasets have speedups similar to those in Figure 7a: for both
MNIST and CIFAR10, we observed D16M16 and D8M8 having 2.0×
and 3.0× speedup, respectively, over full-precision. We expect that
that using a 16-bit model (for all the layers) will result in quality
indistinguishable from full-precision. Our experiments show that
this is the case, and we show in Figure 7b that it is possible to
train accurately even below 8-bits, using unbiased rounding. This
is a surprising result, as some previous work has suggested that
training at 8-bit precision is too inaccurate [9, 14].

One common alternative to deep learning for classification tasks
is the kernel support vector machine (SVM). We hypothesized that,
as with logistic regression, Buckwild! would have little effect on
statistical efficiency in this setting. We evaluated our techniques

by running kernel SVMs15 on MNIST using the random Fourier
features technique [41], a standard proxy for Gaussian kernels.
To study the statistical efficiency, we measured both the average
training loss and the test error when using all our software op-
timizations (and 18 threads). Our results, which are displayed in
Figure 7d (training loss) and Figure 7e (test error), show that 16-bit
(D16M16) Buckwild! achieves accuracy that essentially matches
full-precision computation, and 8-bit (D8M8) produces results that
are within a percent of full-precision. We also observed runtimes
similar to those in Figure 3; compared to the 32-bit floating point
version, the 16-bit and 8-bit versions ran 3.3× and 5.9× faster, re-
spectively. This illustrates that Buckwild! has higher throughput
than Hogwild! while producing results with similar accuracy.

8 BUCKWILD BEYOND THE CPU
To see how Buckwild! could be implemented if we were free of
the architectural constraints of a modern CPU, we studied its per-
formance on an FPGA. On the FPGA, we are able to freely explore
the various components of the DMGC model. Specifically, we can:
(1) perform arithmetic operations on data types of any precision
and reclaim freed logic resources when doing so; (2) operate with
15We ran ten such SVM classifiers, one for each digit, in a standard one-versus-all
system.
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SIMD operations that are effectively any length; and (3) compress
memory usage directly by using low-precision without incurring
overhead for unbiased rounding.

We started by creating a high-level, parameterized description
of linear regression SGD (which has the same compute structure as
logistic regression), focusing on the case where the model can fit in
on-chip block RAM.16 We then compiled this description down to
VHDL using the DHDL framework [21, 40], which uses heuristic
search to choose optimal parameters for a particular design.

In order to design this implementation of the algorithm, we used
the concepts presented in previous sections to guide our design. The
DMGC model was a useful guide for systematically understanding
how statistical efficiency is impacted by precision choices. On the
FPGA, we can exploit arbitrarily large SIMD parallelism, as well
as local XORSHIFT modules as discussed previously. We can also
design modules for performing exactly the same operations that we
propose as new ALU instructions. Some of the other optimizations,
such as cache considerations, do not apply to the FPGA. With
the algorithm and the above concepts in mind, there are still a
few new challenges that are unique to the FPGA implementation
and had to be explored. First, we had to decide whether to use
standard SGD or mini-batch SGD (as in §5.4). In hardware, these
two implementations generate very different designs due to the way
memory is managed and control signals are generated. In regular
SGD, we only need to perform one dot product and one AXPY per
model update. This is only acceptable if the model size is large
enough to amortize the cost of issuing a new memory command
for sequential bursts for every iteration. If the model is small, then
we can combine multiple iterations into a single memory request.
This means that mini-batch SGD will have more throughput, as
an individual worker can work on multiple examples in between
each model update. However, this means that each update requires
two matrix multiplies, rather than just a dot product and AXPY.
We empirically found that for our FPGA, mini-batch SGD has the
highest throughput unless a single data vector spans at least 100
DRAM bursts. As on the CPU, though, mini-batch may negatively
affect statistical efficiency.

Second, with either of the two implementations, we must match
the volume of data being read with the volume of data being pro-
cessed. Every data element we load from main memory must be
read twice per update: once to compute the error of the current
model and then again to compute the update. The second step de-
pends on the result of the first step. Therefore, we can either choose
to divide the design into two stages, data-load and data-process,
where the data-process stage must consume data twice as fast as
the off-chip load, or three stages, off-chip-load, error-compute, and
update-compute, where the three stages must consume data at the
same rate and asynchronously communicate to each other when
they are finished. The designs are illustrated in Figure 7c. The three-
stage design requires the second stage to copy data from the BRAM
it reads from to the BRAM that the third stage reads from so that
the third stage can compute the correct update given the error that
stage two passes along. Thus, it is a better design when compute
logic is scarce but BRAM is abundant. However, since the two-stage

16This is analogous to the model fitting in the L3 cache on the CPU.

Optimization Beneficial when? Stat. eff. loss

Optimized SIMD Always None
Fast PRNG Using unbiased rounding Negligible
No prefetching Communication-bound Negligible
Mini-batch Communication-bound Possible

New instructions Always None
Obstinate cache Communication-bound Negligible

Table 3: Summary of optimizations discussed in this paper.

design does not need to make a redundant copy of the data, it is a
better candidate when BRAM is scarce.

Figure 7f shows that our optimized designs have higher through-
put (by up to 2.5×), but use less FPGA resources, as the precision
decreases. Similarly, when keeping the model precision fixed, halv-
ing the dataset precision improves both throughput and area. This
illustrates the benefits of setting precision using the DMGC model
on the FPGA. Furthermore, the performance per watt is better for
this algorithm on the FPGA. Using an Altera Stratix V GS 5SGSD8,
we acheived an average of 0.339 GNPS/watt, while the implementa-
tion on a Xeon E7-8890 acheived 0.143 GNPS/watt.

9 CONCLUSION
In this paper, we studied the performance of the asynchronous, low-
precision variant of stochastic gradient descent. Understanding this
technique is becoming increasingly important for system architects
as SGD becomes increasingly dominant within machine learning
and other domains. We introduced a new conceptual framework
for classifying precision, the DMGC model, and showed how it
can be used to both clarify existing techniques, and model the
throughput of new implementations. With insight from this model,
we proposed several software optimizations and hardware changes
(summarized in Table 3) that can improve the performance of a
Buckwild! implementation by up to 11×. We also showed that low-
precision computation can be useful for SGD beyond the CPU, and
described techniques that were useful to achieve good performance
on an FPGA.
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