
Designing Computer
Systems for Software 2.0

Kunle Olukotun
Stanford University

SambaNova Systems

ISCA ’18 Keynote, June 5, 2018

The Era of Machine Learning
n Incredible advances in image recognition, natural language processing, planning and

knowledge bases

n Society-scale impact: autonomous vehicles, personalized recommendations and
personalized medicine

n Many applications of ML just with supervised learning
Pathlogy Images

Pathology Reports
A.
Histologic
type:

Adenocarcinoma
Histologic
grade:
Moderately

differentiated
... ...

Visual Features

Text Extractions
A.
Histologic
type:

Adenocarcinoma
Histologic
grade:
Moderately

differentiated
... ...

Probability of
Survival

Cleanly separated

Images + patient data
outperform expert

pathologists at prognosis
Tumor grade & stage classification from histopathology slides (Nature Comm., Hsing-Yu et. al.)

Machine Learning Today

Machine Learning

Conventional algorithms

Data size, model complexity

Ac
cu

ra
cy

1980s Today
More
Compute

Adapted from Jeff Dean
HotChips 2017

Software 1.0 vs Software 2.0

n Written in code (C++, …)
n Requires domain expertise

1. Decompose the problem
2. Design algorithms
3. Compose into a system

n Written in the weights of a neural
network model by optimization

Andrej Karpathy
Scaled ML 2018 talk

Software 2.0 is Eating Software 1.0

1000x Productivity: Google
shrinks language translation
code from 500k LoC to 500

https://jack-clark.net/2017/10/09/import-ai-63-google-shrinks-language-translation-code-
from-500000-to-500-lines-with-ai-only-25-of-surveyed-people-believe-automationbetter-jobs

Classical problems
• Data cleaning (Holoclean.io)
• Self-driving DBMS (Peloton)
• Self-driving networks (Pensieve)

Easier to build and deploy
• Build products faster
• Predictable runtimes and memory use: easier qualification

Training Data: The New Input to Software 2.0

1.0 2.0

• Input: Algorithms in code

• Compiled to: Machine instructions

• Input: Training data

• Compiled to: Learned parameters

https://medium.com/@karpathy/

Better Training Data with Snorkel

n Training data is the critical interface to program Software 2.0
n Expensive & slow especially when domain expertise is needed

n Snorkel
n Get users to provide higher-level (but noisier) training data

n weak supervision

n Data programming

n Then model & de-noise it to train high-quality models

n Implications of Snorkel
n Two model training steps

n New training pipeline: data operations interleaved with training Chris Ré

Alex Ratner

ML Training is Limited by Computation

From EE Times – September 27, 2016
“Today the job of training machine learning models is limited by compute,
if we had faster processors we’d run bigger models...in practice we train
on a reasonable subset of data that can finish in a matter of months. We
could use improvements of several orders of magnitude – 100x or
greater.”

Greg Diamos, Senior Researcher, SVAIL, Baidu

Power and Performance

Specialization ⇒ better energy efficiency

FIXED

Energy
efficiencyPerformance

"#$%& = ()*
%+#,- × /#01%

()

Key Questions

n How do we speed up machine learning by 100x?
n Moore’s law slow down and power wall
n >100x improvement in performance/watt
n Enable new ML applications and capabilities
n Make ML easier to use (e.g. neural architecture search, Snorkel)

n How do we balance performance and programmability?
n ASIC-like performance/Watt
n Processor-like flexibility

n Need a “full-stack” solution
1. ML Algorithms
2. Domain Specific Languages and Compilers
3. Hardware

ML Algorithms

Computational Models

n Software 1.0 model
n Deterministic computations with algorithms
n Computation must be correct for debugging

n Software 2.0 model
n Probabilistic machine-learned models trained from data
n Computation only has to be statistically correct

n Creates many opportunities for improved performance

Machine Learning Training

min x f (x, yi)
i=1

N

∑Optimization Problem:

xk+1 = xk −αN∇f (xk, yj)

Solving large-scale problems:
Stochastic Gradient Descent (SGD)

Select one term, j, and
estimate gradient

Billions of tiny sequential iterations: how to parallelize?

E.g.: Classification, Recommendation, Deep Learning

Loss function

Model

Data

Billions

SGD: Two Kinds of Efficiency

n Statistical efficiency: how many iterations do we need to get
the desired accuracy level?
n Depends on the problem and implementation

n Hardware efficiency: how long it takes to run each iteration?
n Depends on the hardware and implementation

trade off hardware and statistical efficiency
to maximize performance

Training Optimization Opportunities

n Consistency of algorithms can be relaxed to reduce overheads
n Sparsity to reduce communication and computation cost
n Low precision arithmetic to reduce computation cost

SGD On Shared Memory

SGD consists of BILLIONS of tiny
threads that update a single data
structure (!)!

Implemented with locking SGD actually
gets slower with more cores

So what can we do?

Asynchronous Update Strategy (Hogwild!)

n Run multiple worker threads without locks
n Threads work together and modify a single copy of the model creating

many data races
n Improves hardware efficiency

n What about the data races?
n Races introduce errors we can model as noise
n Below existing noise floor à negligible effect on statistical efficiency
n Theorem (roughly, Niu et. al. NIPS11): If we do no locking, SGD converges

to correct answer—at essentially the same rate!

SGD Communication Reduction

n Shared memory
n Obstinate cache: probabilistically drop 99% of

invalidates
n No impact on statistical efficiency
n De Sa, Feldman, Ré, Olukotun: ISCA 2017

n Distributed Memory
n Sparsity: 99.9% of the gradient exchange in

distributed SGD is redundant
n Use momentum correction to maintain accuracy
n Lin, Han, Mao, Wang, Dally: ICLR 18

Low Precision: The Pros

Energy

Memory

Throughput

Low Precision: The Con

Accuracy

Low precision works for inference (e.g. TPU, Brainwave)

Training usually requires at least 16 bit floating point
numbers

High Accuracy Low Precision (HALP) SGD

n The gradients get smaller as we approach the optimum
n Dynamically rescale the fixed-point representation
n Get less error with the same number of bits

Chris De Sa | Chris Aberger | Megan Leszczynski | Jian Zhang | Alana Marzoev | Kunle Olukotun | Chris Ré

Bit Centering: bound, re-center, re-scale

CNN: HALP versus Full-Precision Algorithms

n HALP has better statistical efficiency than SGD!

14-layer ResNet on CIFAR10

Relax, It’s Only Machine Learning

n Relax synchronization: data races are better
n HogWild! [De Sa, Olukotun, Ré: ICML 2016, ICML Best Paper]

n Relax cache coherence: incoherence is better
n [De Sa, Feldman, Ré, Olukotun: ISCA 2017]

n Relax communication: sparse communication is better
n [Lin, Han et. al.: ICLR 18]

n Relax precision: small integers are better
n HALP [De Sa, Aberger, et. al.]

Better hardware efficiency
with negligible impact on statistical efficiency

Chris De Sa

Song Han

Chris Aberger

Domain Specific Languages

Domain Specific Languages

n Domain Specific Languages (DSLs)
n Programming language with restricted expressiveness for a particular

domain (operators and data types)
n High-level, usually declarative, and deterministic
n Focused on productivity not usually performance
n High-performance DSLs (e.g. OptiML) è performance and productivity

K-means Clustering in OptiML

untilconverged(kMeans, tol){kMeans =>
val clusters = samples.groupRowsBy { sample =>

kMeans.mapRows(mean => dist(sample, mean)).minIndex
}
val newKmeans = clusters.map(e => e.sum / e.length)
newKmeans

}

calculate distances to
current means

assign each sample to the closest mean

move each cluster centroid to the
mean of the points assigned to it

A. Sujeeth et. al.,
“OptiML: An Implicitly
Parallel Domain-
Specific Language for
Machine Learning,”
ICML, 2011.

Arvind Sujeeth

• No explicit map-reduce, no key-value pairs
• No distributed data structures (e.g. RDDs)
• Efficient multicore, cluster and GPU execution

K-means Clustering in TensorFlow
points = tf.constant(np.random.uniform(0, 10, (points_n, 2)))
centroids = tf.Variable(tf.slice(tf.random_shuffle(points), [0, 0], [clusters_n, -1]))

points_expanded = tf.expand_dims(points, 0)
centroids_expanded = tf.expand_dims(centroids, 1)

distances = tf.reduce_sum(tf.square(tf.sub(points_expanded, centroids_expanded)), 2)
assignments = tf.argmin(distances, 0)

means = []
for c in xrange(clusters_n):

means.append(tf.reduce_mean(
tf.gather(points,

tf.reshape(
tf.where(
tf.equal(assignments, c)

),[1,-1])
),reduction_indices=[1]))

new_centroids = tf.concat(0, means)

update_centroids = tf.assign(centroids, new_centroids)

calculate distances to
current means

assign each sample to the closest mean

move each cluster centroid to the
mean of the points assigned to it

DSL IR: Parallel Patterns

Most data analytic computations including ML can be expressed as functional
data parallel patterns on collections (e.g. sets, arrays, tables, n-d matrices)

Nested parallel patterns

Map, Zip, Filter, FlatMap, Reduce,
GroupBy, Join, Sort, …

map reduce groupBy

key1 key3key2

…filter

Parallel Pattern Language è High Level Parallel ISA

n A data-parallel language that supports nested parallel patterns {{{}}}
n Example application: k-means

val clusters = samples GroupBy { sample =>
val dists = kMeans Map { mean =>
mean.Zip(sample){ (a,b) => sq(a – b) } Reduce { (a,b) => a + b }

}
Range(0, dists.length) Reduce { (i,j) =>
if (dists(i) < dists(j)) i else j

}
}
val newKmeans = clusters Map { e =>
val sum = e Reduce { (v1,v2) => v1.Zip(v2){ (a,b) => a + b } }
val count = e Map { v => 1 } Reduce { (a,b) => a + b }

sum Map { a => a / count }
}

Delite
Framework for building HP DSL
compilers
Key elements
n IR embedded in Scala
n Domain specific optimization
n General parallelism and locality

optimizations
n Structured computation
n Structured data

n Optimized mapping to HW
targets

Opti{QL, ML, Graph}

Optimized Code Generators

Scala C++ CUDA OpenCL MPI Accel IR

Generic analyses
&

transformations

parallel data Parallel
patterns

Domain specific
analyses &

transformationsdomain data

domain ops

DSL 1

•••
domain data

domain ops

DSL n

SQL, TensorFlow

Hassan Chafi HyoukJoong LeeKevin Brown

MSM Builder Using OptiML

with Vijay Pande

!

Markov State Models (MSMs)
MSMs are a powerful means of
modeling the structure and
dynamics of molecular systems,
like proteins

x86 ASM

high prod, low perf

low prod, high perf

high prod, high perf

Hardware

Accelerators for ML

CPU
Threads
SIMD

GPU
Massive threads
SIMD
HBM

FPGA
LUTs
DSP
BRAM

TPU
MM unit
BRAM

What next?

What to Accelerate? ML Arxiv Papers Per Year

Adapted from Jeff Dean
Scaled ML 2018

ASIC Design Time

Need Configurable Accelerators

Parallel Patterns to Spatial

Accelerator IR: Spatial
n Interface to configurable accelerator

Generate Accelerator IR
n Tile parallel patterns

n Transform nested parallel patterns to
hierarchical pipelines

Opti{QL, ML, Graph}

Optimized Code Generators

Scala C++ CUDA OpenCL MPI Spatial

Generic analyses
&

transformations

parallel data Parallel
patterns

Domain specific
analyses &

transformationsdomain data

domain ops

DSL 1

•••
domain data

domain ops

DSL n

SQL, TensorFlow

Spatial: Accelerator IR/Language
n Simplify configurable accelerator design

n IR that can be mapped to many hardware targets: FPGA, ASIC, …
n Constructs to express:

n Parallel patterns as parallel and pipelined datapaths
n Hierarchical control
n Explicit memory hierarchies
n Explicit parameters

n Optimizes parameters for each target: parallelization, pipelining, memory
size, memory banking

n Allows programmers and high-level compilers to focus on
specifying parallelism and locality
n Designed for performance oriented programmers
n Focus on dataflow instead of threads

David Koeplinger

Matt Feldman

D. Koeplinger et. al.,“Spatial: A Language and Compiler for Application Accelerators” PLDI 2018.

Programing Locality: Memory Templates

DDR DRAM
GB

On-Chip SRAM
MB

Local SRAM
KB

val image = DRAM[UInt8](H,W)

val buffer = SRAM[UInt8](C)

val accum = Reg[Double]
val fifo = FIFO[Float](D)
val lbuf = LineBuffer[Int](R,C)
val pixels = RegFile[UInt8](R,C)

buffer load image(i, j::j+C) // dense
buffer gather image(a) // sparse

GDA in Spatial
type V = FixPt[TRUE,_9,_7]
val x_dram = DRAM[V](R, C)
val y_dram = DRAM[Bit](R)
val mu0 = SRAM[V](C)
val mu1 = SRAM[V](C)
val sigma = SRAM[V](C,C)

MemReduce(sigma)(R by T){r =>
val x = SRAM[V](T, C)
val y = SRAM[Bit](T)
x load x_dram(r::r+T, 0::C)

y load y_dram(r::r+T)

MemReduce(SRAM[V](C,C))(T by 1){rr =>

val sub = SRAM[V](C)
val sigma_blk = SRAM[V](C,C)
Foreach(C by 1){c =>

sub(c) = x(c) - mux(y(c), mu1(c), mu0(c))

}

Foreach(C by 1, C by 1){(i,j) =>
sigma_blk(i,j) = sub(i) * sub(j)

}

sigma_blk

}{(a,b) => a + b }

}{(a,b) => a + b }

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Arbitrary precision custom types
Off-chip memory allocations
On-chip memory allocations

Explicit memory transfers

Nested pipelines

TensorFlow to FPGA

Input Data Conv

Weight

SumPool Norm

Weight

Conv

High Level
Application

Dataflow graph of
domain-specific operators

Delite
Fram

ew
ork

Chisel

Spatial IR
Spatial Compiler

DRAM
Shift Reg

Line Buffer

Reg File

+

SRAM
x
x
x

Map

Parallel Pattern IR

IR Translation
Reduce Hierarchical dataflow

graph of parallel patterns
Input Data

Weight

Input Data

Pattern Compiler

FPGA Configuration

FPGA Tools

Stefan Hadjis

Programmability vs. Energy Efficiency

CPUs

Dedicated

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Chip Number

0.1

1

10

100

1000

10000

En
er

gy
 E

ffi
cie

nc
y

[M
OP

S/
m

W
]

CPUs+GPUs

1000x
GPU⦿ FPGA

❖CPU
more less not

programmable programmable programmable

Data normalized to a 28nm technology

Source: Dejan Markovic

FPGA: Good, Bad and Ugly

n Flexibility
n No instruction overhead
n Performance / Watt

n Fine-grained reconfigurability overheads:
n >60% area and power spent on interconnect

n Long compile times (days)

Clock
20%

Logic
20%

Interconnect
60%

Logic
20%

Interconnect
80%

Area Power

Design reconfigurable hardware with the right abstractions

Bit-level reconfigurable logic elements + static interconnect

DARPA Software Defined Hardware (SDH) Program

CPUs

Dedicated

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Chip Number

0.1

1

10

100

1000

10000

En
er

gy
 E

ffi
cie

nc
y

[M
OP

S/
m

W
]

CPUs+GPUs

1000x
GPU⦿ FPGA

❖CPU
more less not

programmable programmable programmable

✾SDH
The goal of the SDH
program is to build runtime-
reconfigurable hardware
and software that enables
near ASIC performance
without sacrificing
programmability for data-
intensive algorithms.

Plasticine: A Reconfigurable Architecture for Parallel
Patterns

Up to 95x Performance

Up to 77x Perf/W

vs. Stratix V FPGA

map

reduce groupBy

key1 key3key2

filter

High-level Parallel Patterns (Spatial) Plasticine Accelerator High Performance

Energy Efficiency

Tiled architecture with reconfigurable SIMD pipelines,
distributed scratchpads, and statically programmed switches

Prabhakar, Zhang, et. al. ISCA 2017

Yaqi ZhangRaghu Prabhakar

Plasticine: PCU

Nested parallelism

Hierarchical Datapath
Flexible Control Mechanism

Plasticine: PMU

wen

PR FU PR FU PR FU PR

SRAM

Banking
Buffering
Logic

SRAM

SRAM

SRAM

Scratchpad

Vector
FIFO

C0
C1

Counters
Control
Block

Control
Inputs

Scalar
FIFO

Scalar
Inputs

Vector
Inputs

Vector
Outputs

Control
Outputs

Scalar
Outputs

Locality, Banking,
Buffering

On-chip Scratchpads +
Configurable banking

Address partitioning for multi-
buffering

Mapping Spatial to Plasticine
vecA vecB

Load vecA(i :: i+B) Load vecB(i :: i+B)

tA tB
j

x

tA(j..j+3) tB(j..j+3)

acc

+
i

out+

xxx
+

+

+

Dot Product

Plasticine Area Breakdown

PCU
48%

PMU
30%

Interconnect
17%

MC
5%

We Can Have It All with Software 2.0!

n Productivity

n Power

n Performance

n Programmability

n Portability

Architectures (e.g. TPU, SDH)

High Performance DSLs (e.g. OptiML, TensorFlow, PyTorch)

High-Level Compiler

ML Algorithms (e.g. Hogwild!, HALP)

ML Developer

Low-Level Compiler

Accelerator IR (e.g. Spatial)

Thank You!

n Questions?

