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The Era of Machine Learning
n Incredible advances in image recognition, natural language processing, planning and  

knowledge bases

n Society-scale impact: autonomous vehicles, personalized recommendations and 
personalized medicine

n Many applications of ML just with supervised learning
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Tumor grade & stage classification from histopathology slides (Nature Comm., Hsing-Yu et. al.)



Machine Learning Today

Machine Learning 

Conventional algorithms

Data size, model complexity
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Adapted from Jeff Dean
HotChips 2017



Software 1.0 vs Software 2.0

n Written in code (C++, …)
n Requires domain expertise

1. Decompose the problem
2. Design algorithms
3. Compose into a system

n Written in the weights of a neural 
network model by optimization

Andrej Karpathy
Scaled ML 2018 talk



Software 2.0 is Eating Software 1.0

1000x Productivity: Google 
shrinks language translation 
code from 500k LoC to 500 

https://jack-clark.net/2017/10/09/import-ai-63-google-shrinks-language-translation-code-
from-500000-to-500-lines-with-ai-only-25-of-surveyed-people-believe-automationbetter-jobs

Classical problems 
• Data cleaning (Holoclean.io)
• Self-driving DBMS (Peloton)
• Self-driving networks (Pensieve)

Easier to build and deploy
• Build products faster
• Predictable runtimes and memory use: easier qualification



Training Data: The New Input to Software 2.0 

1.0 2.0

• Input: Algorithms in code

• Compiled to: Machine instructions

• Input: Training data

• Compiled to: Learned parameters

https://medium.com/@karpathy/



Better Training Data with Snorkel

n Training data is the critical interface to program Software 2.0
n Expensive & slow especially when domain expertise is needed

n Snorkel
n Get users to provide higher-level (but noisier) training data

n weak supervision

n Data programming

n Then model & de-noise it to train high-quality models

n Implications of Snorkel
n Two model training steps

n New training pipeline: data operations interleaved with training Chris Ré

Alex Ratner



ML Training is Limited by Computation

From EE Times – September 27, 2016 
“Today the job of training machine learning models is limited by compute, 
if we had faster processors we’d run bigger models...in practice we train 
on a reasonable subset of data that can finish in a matter of months. We 
could use improvements of several orders of magnitude – 100x or 
greater.” 

Greg Diamos, Senior Researcher, SVAIL, Baidu



Power and Performance

Specialization ⇒ better energy efficiency
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Key Questions

n How do we speed up machine learning by 100x?
n Moore’s law slow down and power wall
n >100x improvement in performance/watt
n Enable new ML applications and capabilities 
n Make ML easier to use (e.g. neural architecture search, Snorkel)

n How do we balance performance and programmability?
n ASIC-like performance/Watt
n Processor-like flexibility

n Need a “full-stack” solution
1. ML Algorithms
2. Domain Specific Languages and Compilers 
3. Hardware



ML Algorithms



Computational Models

n Software 1.0 model
n Deterministic computations with algorithms
n Computation must be correct for debugging

n Software 2.0 model
n Probabilistic machine-learned models trained from data
n Computation only has to be statistically correct

n Creates many opportunities for improved performance



Machine Learning Training

min x f (x, yi )
i=1

N

∑Optimization Problem:

xk+1 = xk −αN∇f (xk, yj )

Solving large-scale problems: 
Stochastic Gradient Descent (SGD)

Select one term, j, and 
estimate gradient

Billions of tiny sequential iterations: how to parallelize?

E.g.: Classification, Recommendation, Deep Learning

Loss function

Model

Data

Billions



SGD: Two Kinds of Efficiency

n Statistical efficiency: how many iterations do we need to get 
the desired accuracy level?
n Depends on the problem and implementation

n Hardware efficiency: how long it takes to run each iteration?
n Depends on the hardware and implementation

trade off hardware and statistical efficiency
to maximize performance



Training Optimization Opportunities

n Consistency of algorithms can be relaxed to reduce overheads
n Sparsity to reduce communication and computation cost
n Low precision arithmetic to reduce computation cost



SGD On Shared Memory

SGD consists of BILLIONS of tiny 
threads that update a single data 
structure (!)! 

Implemented with locking SGD actually 
gets slower with more cores

So what can we do?



Asynchronous Update Strategy (Hogwild!)

n Run multiple worker threads without locks
n Threads work together and modify a single copy of the model creating 

many data races
n Improves hardware efficiency

n What about the data races?
n Races introduce errors we can model as noise
n Below existing noise floor à negligible effect on statistical efficiency
n Theorem (roughly, Niu et. al. NIPS11): If we do no locking, SGD converges 

to correct answer—at essentially the same rate! 



SGD Communication Reduction

n Shared memory
n Obstinate cache: probabilistically drop 99% of 

invalidates
n No impact on statistical efficiency
n De Sa, Feldman, Ré, Olukotun: ISCA 2017

n Distributed Memory
n Sparsity: 99.9% of the gradient exchange in 

distributed SGD is redundant
n Use momentum correction to maintain accuracy
n Lin, Han, Mao, Wang, Dally: ICLR 18



Low Precision: The Pros

Energy

Memory 

Throughput



Low Precision: The Con

Accuracy

Low precision works for inference (e.g. TPU, Brainwave)

Training usually requires at least 16 bit floating point 
numbers



High Accuracy Low Precision (HALP) SGD

n The gradients get smaller as we approach the optimum
n Dynamically rescale the fixed-point representation 
n Get less error with the same number of bits

Chris De Sa | Chris Aberger | Megan Leszczynski | Jian Zhang | Alana Marzoev | Kunle Olukotun | Chris Ré

Bit Centering: bound, re-center, re-scale



CNN: HALP versus Full-Precision Algorithms

n HALP has better statistical efficiency than SGD!

14-layer ResNet on CIFAR10



Relax, It’s Only Machine Learning

n Relax synchronization: data races are better
n HogWild! [De Sa, Olukotun, Ré: ICML 2016, ICML Best Paper]

n Relax cache coherence: incoherence is better
n [De Sa, Feldman, Ré, Olukotun: ISCA 2017]

n Relax communication: sparse communication is better
n [Lin, Han et. al.: ICLR 18]

n Relax precision: small integers are better
n HALP [De Sa, Aberger, et. al.] 

Better hardware efficiency
with negligible impact on statistical efficiency

Chris De Sa

Song Han

Chris Aberger



Domain Specific Languages



Domain Specific Languages

n Domain Specific Languages (DSLs) 
n Programming language with restricted expressiveness for a particular 

domain (operators and data types)
n High-level, usually declarative, and deterministic
n Focused on productivity not usually performance
n High-performance DSLs (e.g. OptiML)  è performance and productivity



K-means Clustering in OptiML

untilconverged(kMeans, tol){kMeans =>
val clusters = samples.groupRowsBy { sample =>

kMeans.mapRows(mean => dist(sample, mean)).minIndex
}
val newKmeans = clusters.map(e => e.sum / e.length)
newKmeans

}

calculate distances to 
current means

assign each sample to the closest mean

move each cluster centroid to the 
mean of the points assigned to it

A. Sujeeth et. al., 
“OptiML: An Implicitly 
Parallel Domain-
Specific Language for 
Machine Learning,” 
ICML, 2011.

Arvind Sujeeth

• No explicit map-reduce, no key-value pairs
• No distributed data structures (e.g. RDDs)
• Efficient multicore, cluster and GPU execution



K-means Clustering in TensorFlow
points = tf.constant(np.random.uniform(0, 10, (points_n, 2)))
centroids = tf.Variable(tf.slice(tf.random_shuffle(points), [0, 0], [clusters_n, -1]))

points_expanded = tf.expand_dims(points, 0)
centroids_expanded = tf.expand_dims(centroids, 1)

distances = tf.reduce_sum(tf.square(tf.sub(points_expanded, centroids_expanded)), 2)
assignments = tf.argmin(distances, 0)

means = []
for c in xrange(clusters_n):

means.append(tf.reduce_mean(
tf.gather(points, 

tf.reshape(
tf.where(
tf.equal(assignments, c)

),[1,-1])
),reduction_indices=[1]))

new_centroids = tf.concat(0, means)

update_centroids = tf.assign(centroids, new_centroids)

calculate distances to 
current means

assign each sample to the closest mean

move each cluster centroid to the 
mean of the points assigned to it



DSL IR: Parallel Patterns

Most data analytic computations including ML can be expressed as functional 
data parallel patterns on collections (e.g. sets, arrays, tables, n-d matrices)

Nested parallel patterns

Map, Zip, Filter, FlatMap, Reduce, 
GroupBy, Join, Sort, …

map reduce groupBy

key1 key3key2

…filter



Parallel Pattern Language è High Level Parallel ISA

n A data-parallel language that supports nested parallel patterns {{{}}}
n Example application: k-means

val clusters = samples GroupBy { sample =>
val dists = kMeans Map { mean => 
mean.Zip(sample){ (a,b) => sq(a – b) } Reduce { (a,b) => a + b }

}
Range(0, dists.length) Reduce { (i,j) =>
if (dists(i) < dists(j)) i else j

}
}
val newKmeans = clusters Map { e => 
val sum = e Reduce { (v1,v2) => v1.Zip(v2){ (a,b) => a + b } }
val count = e Map { v => 1 } Reduce { (a,b) => a + b }

sum Map { a => a / count }
}



Delite
Framework for  building HP DSL 
compilers
Key elements
n IR embedded in Scala
n Domain specific optimization
n General parallelism and locality 

optimizations
n Structured computation
n Structured data

n Optimized mapping to HW 
targets

Opti{QL, ML, Graph}

Optimized Code Generators

Scala C++ CUDA OpenCL MPI Accel  IR

Generic analyses
& 

transformations

parallel data Parallel 
patterns

Domain specific 
analyses & 

transformationsdomain data

domain ops

DSL 1

•••
domain data

domain ops

DSL n

SQL, TensorFlow

Hassan Chafi HyoukJoong LeeKevin Brown



MSM Builder Using OptiML

with Vijay Pande

!

Markov State Models (MSMs)
MSMs are a powerful means of 
modeling the structure and 
dynamics of molecular systems, 
like proteins 

x86 ASM

high prod, low perf

low prod, high perf

high prod, high perf



Hardware



Accelerators for ML

CPU
Threads
SIMD

GPU
Massive threads
SIMD
HBM

FPGA
LUTs
DSP
BRAM

TPU
MM unit
BRAM

What next?



What to Accelerate? ML Arxiv Papers Per Year

Adapted from Jeff Dean
Scaled ML 2018

ASIC Design Time

Need Configurable Accelerators



Parallel Patterns to Spatial

Accelerator IR: Spatial
n Interface to configurable accelerator

Generate Accelerator IR
n Tile parallel patterns

n Transform nested parallel patterns to 
hierarchical pipelines

Opti{QL, ML, Graph}

Optimized Code Generators

Scala C++ CUDA OpenCL MPI Spatial

Generic analyses
& 

transformations

parallel data Parallel 
patterns

Domain specific 
analyses & 

transformationsdomain data

domain ops

DSL 1

•••
domain data

domain ops

DSL n

SQL, TensorFlow



Spatial: Accelerator IR/Language 
n Simplify configurable accelerator design

n IR that can be mapped to many hardware targets: FPGA, ASIC, …
n Constructs to express:

n Parallel patterns as parallel and pipelined datapaths
n Hierarchical control
n Explicit memory hierarchies
n Explicit parameters

n Optimizes parameters for each target: parallelization, pipelining, memory 
size, memory banking

n Allows programmers and high-level compilers to focus on 
specifying parallelism and locality
n Designed for performance oriented programmers
n Focus on dataflow instead of threads

David Koeplinger

Matt Feldman

D. Koeplinger et. al.,“Spatial: A Language and Compiler for Application Accelerators” PLDI 2018. 



Programing Locality: Memory Templates

DDR DRAM
GB

On-Chip SRAM
MB

Local SRAM
KB

val image  = DRAM[UInt8](H,W)

val buffer = SRAM[UInt8](C)

val accum = Reg[Double]
val fifo = FIFO[Float](D)
val lbuf = LineBuffer[Int](R,C)
val pixels = RegFile[UInt8](R,C)

buffer load   image(i, j::j+C) // dense
buffer gather image(a)         // sparse



GDA in Spatial
type V = FixPt[TRUE,_9,_7]
val x_dram = DRAM[V](R, C)
val y_dram = DRAM[Bit](R)
val mu0    = SRAM[V](C)
val mu1    = SRAM[V](C)
val sigma  = SRAM[V](C,C)

MemReduce(sigma)(R by T){r =>
val x = SRAM[V](T, C)
val y = SRAM[Bit](T)
x load x_dram(r::r+T, 0::C)

y load y_dram(r::r+T)

MemReduce(SRAM[V](C,C))(T by 1){rr =>

val sub = SRAM[V](C)
val sigma_blk = SRAM[V](C,C)
Foreach(C by 1){c =>

sub(c) = x(c) - mux(y(c), mu1(c), mu0(c))

}

Foreach(C by 1, C by 1){(i,j) =>
sigma_blk(i,j) = sub(i) * sub(j)

}

sigma_blk

}{(a,b) => a + b }

}{(a,b) => a + b }

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Arbitrary precision custom types
Off-chip memory allocations
On-chip memory allocations

Explicit memory transfers

Nested pipelines



TensorFlow to FPGA

Input Data Conv

Weight

SumPool Norm

Weight

Conv

High Level 
Application

Dataflow graph of 
domain-specific operators

Delite
Fram

ew
ork

Chisel

Spatial IR
Spatial Compiler

DRAM
Shift Reg

Line Buffer

Reg File

+

SRAM
x
x
x

Map

Parallel Pattern IR

IR Translation
Reduce Hierarchical dataflow

graph of parallel patterns
Input Data

Weight

Input Data

Pattern Compiler

FPGA Configuration

FPGA Tools

Stefan Hadjis



Programmability vs. Energy Efficiency 

CPUs

Dedicated

1     2     3     4      5      6     7      8      9     10     11     12     13     14     15     16 
Chip Number

0.1

1

10

100

1000

10000

En
er

gy
 E

ffi
cie

nc
y 

[M
OP

S/
m

W
]

CPUs+GPUs

1000x
GPU⦿ FPGA

❖CPU
more                              less                                              not

programmable             programmable                         programmable

Data normalized to a 28nm technology

Source: Dejan Markovic



FPGA: Good, Bad and Ugly

n Flexibility
n No instruction overhead
n Performance / Watt

n Fine-grained reconfigurability overheads:
n >60% area and power spent on interconnect

n Long compile times (days)

Clock
20%

Logic
20%

Interconnect
60%

Logic
20%

Interconnect
80%

Area Power

Design reconfigurable hardware with the right abstractions

Bit-level reconfigurable logic elements + static interconnect



DARPA Software Defined Hardware (SDH) Program
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✾SDH
The goal of the SDH 
program is to build runtime-
reconfigurable hardware 
and software that enables 
near ASIC performance 
without sacrificing 
programmability for data-
intensive algorithms.



Plasticine: A Reconfigurable Architecture for Parallel 
Patterns 

Up to 95x Performance

Up to 77x Perf/W

vs. Stratix V FPGA

map

reduce groupBy

key1 key3key2

filter

High-level Parallel Patterns (Spatial) Plasticine Accelerator High Performance

Energy Efficiency

Tiled architecture with reconfigurable SIMD pipelines, 
distributed scratchpads, and statically programmed switches

Prabhakar, Zhang, et. al.  ISCA 2017

Yaqi ZhangRaghu Prabhakar



Plasticine: PCU

Nested parallelism

Hierarchical Datapath
Flexible Control Mechanism



Plasticine: PMU

wen

PR FU PR FU PR FU PR

SRAM

Banking
Buffering
Logic

SRAM

SRAM

SRAM

Scratchpad

Vector
FIFO

C0
C1

Counters
Control
Block

Control
Inputs

Scalar
FIFO

Scalar
Inputs

Vector
Inputs

Vector
Outputs

Control
Outputs

Scalar
Outputs

Locality, Banking,
Buffering

On-chip Scratchpads + 
Configurable banking

Address partitioning for multi-
buffering



Mapping Spatial to Plasticine
vecA vecB

Load vecA(i :: i+B) Load vecB(i :: i+B)

tA tB
j

x

tA(j..j+3) tB(j..j+3)

acc

+
i

out+

xxx
+

+

+

Dot Product



Plasticine Area Breakdown

PCU
48%

PMU
30%

Interconnect
17%

MC
5%



We Can Have It All with Software 2.0!

n Productivity

n Power

n Performance

n Programmability

n Portability

Architectures (e.g. TPU, SDH)

High Performance DSLs (e.g. OptiML, TensorFlow, PyTorch)

High-Level Compiler

ML Algorithms (e.g. Hogwild!, HALP)

ML Developer

Low-Level Compiler

Accelerator IR (e.g. Spatial)



Thank You!

n Questions?


