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The Era of Machine Learning

m Incredible advances in image recognition, natural language processing, planning and
knowledge bases

m Society-scale impact: autonomous vehicles, personalized recommendations and
personalized medicine

m Many applications of ML just with supervised learning
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Tumor grade & stage classification from histopathology slides (Nature Comm., Hsing-Yu et. al.)



Machine Learning Today

1980s Today

I More : Machine Learning
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Software 1.0 vs Software 2.0
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m Written in code (C++, ...) m Written in the weights of a neural
m Requires domain expertise network model by optimization

1. Decompose the problem
2. Design algorithms
3. Compose into a system

Andrej Karpathy
Scaled ML 2018 talk



Software 2.0 is Eating Software 1.0

Easier to build and deploy
e Build products faster
* Predictable runtimes and memory use: easier qualification

1000x Productivity: Google
shrinks language translation
code from 500k LoC to 500

Classical problems
e Data cleaning (Holoclean.io)
e Self-driving DBMS (Peloton)
e Self-driving networks (Pensieve)

https://jack-clark.net/2017/10/09/import-ai-63-google-shrinks-language-translation-code-
from-500000-to-500-lines-with-ai-only-25-of-surveyed-people-believe-automationbetter-jobs



Training Data: The New Input to Software 2.0
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* Input: Algorithms in codé * Input: Training data

* Compiled to: Machine instructions * Compiled to: Learned parameters

https://medium.com/@karpathy/



Better Training Data with Snorkel 5

m Training data is the critical interface to program Software 2.0

m Expensive & slow especially when domain expertise is needed

m Snorkel

m Get users to provide higher-level (but noisier) training data
weak supervision
Data programming

m Then model & de-noise it to train high-quality models

m Implications of Snorkel

m Two model training steps

m New training pipeline: data operations interleaved with training Chris Ré



ML Training is Limited by Computation

From EE Times — September 27, 2016

“Today the job of training machine learning models is limited by compute,
if we had faster processors we’d run bigger models...in practice we train
on a reasonable subset of data that can finish in a matter of months. We
could use improvements of several orders of magnitude — 100x or

greater.”

Greg Diamos, Senior Researcher, SVAIL, Baidu



Power and Performance

Energy

Performance efficiency
Ops Joules
Power = X
second Op

e |

Specialization = better energy efficiency



Key Questions

m How do we speed up machine learning by 100x?
m Moore’s law slow down and power wall
m >100x improvement in performance/watt
m Enable new ML applications and capabilities
m Make ML easier to use (e.g. neural architecture search, Snorkel)
m How do we balance performance and programmability?
m ASIC-like performance/Watt
m Processor-like flexibility

m Need a “full-stack” solution
1. ML Algorithms
2. Domain Specific Languages and Compilers
3. Hardware



ML Algorithms



Computational Models

m Software 1.0 model
m Deterministic computations with algorithms
m Computation must be correct for debugging

m Software 2.0 model
m Probabilistic machine-learned models trained from data
m Computation only has to be statistically correct

m Creates many opportunities for improved performance



Machine Learning Training

Billions Loss function
N
. _ . N
Optimization Problem: mlnxzf(x,yi) ata
i=1 Model

E.g.: Classification, Recommendation, Deep Learning

Solving large-scale problems:
Stochastic Gradient Descent (SGD)

k+1 k k i
X +_ X —OC'NVf(X 9yj) Select one term, j, and

estimate gradient

Billions of tiny sequential iterations: how to parallelize?



SGD: Two Kinds of Efficiency

m Statistical efficiency: how many iterations do we need to get
the desired accuracy level?

m Depends on the problem and implementation

m Hardware efficiency: how long it takes to run each iteration?

m Depends on the hardware and implementation

trade off hardware and statistical efficiency

to maximize performance




Training Optimization Opportunities

m Consistency of algorithms can be relaxed to reduce overheads
m Sparsity to reduce communication and computation cost
m Low precision arithmetic to reduce computation cost



SGD On Shared Memory

SGD consists of BILLIONS of tiny
threads that update a single data
structure (x)!

Implemented with locking SGD actually
gets slower with more cores

So what can we do?



Asynchronous Update Strategy (Hogwild!)

® Run multiple worker threads without locks

m Threads work together and modify a single copy of the model creating
many data races

m Improves hardware efficiency

m What about the data races?

m Races introduce errors we can model as noise
m Below existing noise floor = negligible effect on statistical efficiency

m Theorem (roughly, Niu et. al. NIPS11): If we do no locking, SGD converges
to correct answer—at essentially the same rate!



SGD Communication Reduction

m Shared memory

m Obstinate cache: probabilistically drop 99% of
invalidates

m No impact on statistical efficiency
m De Sa, Feldman, Ré, Olukotun: ISCA 2017

m Distributed Memory
m Sparsity: 99.9% of the gradient exchange in {. HE .]

distributed SGD is redundant // \\WJ{I",TA

m Use momentum correction to maintain accuracy
m Lin, Han, Mao, Wang, Dally: ICLR 18 S e o i




Low Precision: The Pros




Low Precision: The Con

‘ Accuracy

Low precision works for inference (e.g. TPU, Brainwave)

Training usually requires at least 16 bit floating point
numbers



High Accuracy Low Precision (HALP) SGD

Bit Centering: bound, re-center, re-scale

tighten re-centering
bound on and
solution re-scaling

)

global solution O bound on solution e o Pointsrepresentableinlow-precision arithmetic

m The gradients get smaller as we approach the optimum
m Dynamically rescale the fixed-point representation
m Get less error with the same number of bits

Chris De Sa| Chris Aberger | Megan Leszczynski | Jian Zhang | Alana Marzoev | Kunle Olukotun | Chris Ré



CNN: HALP versus Full-Precision Algorithms
14-layer ResNet on CIFAR10
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m HALP has better statistical efficiency than SGD!



Relax, It’s Only Machine Learning

m Relax synchronization: data races are better
m HogWild! [De Sa, Olukotun, Ré: ICML 2016, ICML Best Paper]
m Relax cache coherence: incoherence is better
m [De Sa, Feldman, Ré, Olukotun: ISCA 2017]
m Relax communication: sparse communication is better
m [Lin, Han et. al.: ICLR 18]

m Relax precision: small integers are better
m HALP [De Sa, Aberger, et. al.]

Chris De Sa

ong Han

-—

Better hardware efficiency
with negligible impact on statistical efficiency

Chris Aberger




Domain Specific Languages



Domain Specific Languages

m Domain Specific Languages (DSLs)

m Programming language with restricted expressiveness for a particular
domain (operators and data types)

m High-level, usually declarative, and deterministic
m Focused on productivity not usually performance
m High-performance DSLs (e.g. OptiML) = performance and productivity




K-means Clustering in OptiML

assign each sample to the closest mean
untilconverged(kMeans, tol){kMeans =>

val clusters = samples.groupRowsBy { sample =>
kMeans.mapRows(mean => dist(sample, mean)).minIndex
}

val newKmeans = clusters.map(e => e.sum / e.

calculate distances to
newKmeans

current means

* No e?<pli_cit map—reduce, no key—value pairs move each cluster centroid to the
* No distributed data structures (e.g. RDDs) mean of the points assigned to it
« Efficient multicore, cluster and GPU execution

. A.Sujeeth et.al,,
e Y L “OptiML:An Implicitly
. ’ g : 2 . Parallel Domain-
G ) i &P 5 Specific Language for
'l Machine Learning,’
' ICML, 201 1.




P* TensorFlow

K-means Clustering in

points = tf.constant (np.random.uniform(0, 10, (points n, 2)))
centroids = tf.Variable(tf.slice(tf.random shuffle(points), [0, 0], [clusters n, -1]))

points_expanded = tf.expand dims (points, 0)
centroids_expanded = tf.expand dims(centroids, 1)

calculate distances to

current means

distances = tf.reduce sum(tf.square(tf.sub(points_expanded, centroids expanded)), 2)
assignments = tf.argmin(distances, 0)

assign each sample to the closest mean
means = []

for ¢ in xrange (clusters n):

means .append (tf.reduce mean (
tf.gather (points,

££. reshape ( general machine learning

tf.where (
tf.equal (assignments, c) move each cluster centroid to the
’ ’ mean of the points assigned to it

), [1,-11) 2 .7 Deep Learning in
) ,reduction indices=[1])) paI’tiCU|ar

Open, standard software for

new_centroids = tf.concat (0, means)

First released Nov 2015

update centroids = tf.assign(centroids, new_centroids)



DSL IR: Parallel Patterns

Most data analytic computations including ML can be expressed as functional
data parallel patterns on collections (e.g. sets, arrays, tables, n-d matrices)

Nested parallel patterns

!

groupBy

lll keyl key2 key3
il 1 I

Map, Zip, Filter, FlatMap, Reduce,
GroupBy, Join, Sort, ...



Parallel Pattern Language = High Level Parallel ISA

m A data-parallel language that supports nested parallel patterns {{{ } } }
m Example application: k-means

val clusters = samples GroupBy { sample =>
val dists = kMeans Map { mean =>
mean.Zip(sample){ (a,b) => sq(a - b) } Reduce { (a,b) => a + b }
}
Range(0®, dists.length) Reduce { (i,3j) =>
if (dists(i) < dists(j)) i else j
}
}

val newKmeans = clusters Map { e =>
val sum = e Reduce { (vi,v2) => v1.Zip(v2){ (a,b) => a + b } }
val count = e Map { v => 1 } Reduce { (a,b) => a + b }

sum Map { a => a / count }

}



Delite

DSL
User

DSL __
Developer

\

Delite __
Framework

—_—

Opti{QL, ML, Graph} SQL, TensorFlow

Optimized Code Generators
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Framework for building HP DSL
compilers

Key elements

m IR embedded in Scala

m Domain specific optimization

m General parallelism and locality
optimizations
= Structured computation
= Structured data

m Optimized mapping to HW
targets

Hassan Chafi Kevin Brown HyoukJoong Lee



MSM Builder Using OptiML

Markov State Models (MSMs)
MSMs are a powerful means of
modeling the structure and
dynamics of molecular systems,
like proteins

MSMbuilder Kinetic Clustering high prod, high perf ]

OptiML

C++, x86 ASM —{ low prod, high perf ]
Python k[ high prod, low perf ]

0 500 1000 1500 2000 2500 3000 3500 4000

Relative Speed




Hardware



Accelerators for ML

CPU GPU FPGA TPU What next?
B Threads B Massive threads B LUTs B MM unit
B SIMD H SIMD B DSP B BRAM

H HBM H BRAM



What to Accelerate? ML Arxiv Papers Per Year
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Parallel Patterns to Spatial

DSL { Opti{QL, ML, Graph} SQL, TensorFlow

User L g {1
DSL 1 DSL n Accelerator IR: Spatial
. . Domai ifi
DSL domain ops | .., | domain ops °a”;2'.ry‘§epf§f . m Interface to configurable accelerator
Developer domain data domain data transformations
= T Generate Accelerator IR
parallel data aralle m Tile parallel patterns
| | | | | | | | patterns Generic analyses
& m Transform nested parallel patterns to
transformations hierarchical pipelines
Delite __

Framework s

Optimized Code Generators

{ U U 4

4 4
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Spatial: Accelerator IR/Language

m Simplify configurable accelerator design
m |R that can be mapped to many hardware targets: FPGA, ASIC, ...
m Constructs to express:
= Parallel patterns as parallel and pipelined datapaths
= Hierarchical control
= Explicit memory hierarchies
= Explicit parameters

m Optimizes parameters for each target: parallelization, pipelining, memory
size, memory banking

m Allows programmers and high-level compilers to focus on \
specifying parallelism and locality Matt Feldman
m Designed for performance oriented programmers
m Focus on dataflow instead of threads

D. Koeplinger et. al.,“Spatial: A Language and Compiler for Application Accelerators” PLDI 2018.




Programing Locality: Memory Templates

DDR DRAM
GB

val image = DRAM[UInt8](H,W)

buffer load image(i, j::j+C) // dense
buffer gather image(a) // sparse

On-Chip SRAM

MB val buffer = SRAM[UInt8](C)

val accum = Reg[Double]
Local SRAM val fifo = FIFO[Float](D)
KB val lbuf = LineBuffer[Int](R,C)
val pixels = RegFile[UInt8](R,C)



cONOUVI A WNER

GDA in Spatial

type V = FixPt[TRUE, 9, 7]
val x_dram = DRAM[V](R, C)

val y dram = DRAM[Bit](R)
val mu@ = SRAM[V](C)
val mul = SRAM[V](C)
val sigma = SRAM[V](C,C)

MemReduce(sigma) (R by T){r =>
val x = SRAM[V](T, Q)
val y = SRAM[Bit](T)
x load x_dram(r::r+T, 0::C)
y load y_dram(r::r+T)

MemReduce (SRAM[V](C,C))(T by 1){rr =>
val sub = SRAM[V](C)
val sigma_blk = SRAM[V](C,C)
Foreach(C by 1){c =>

@ Arbitrary precision custom types
. Off-chip memory allocations

. On-chip memory allocations

& Explicit memory transfers

. Nested pipelines

sub(c) = x(c) - mux(y(c), mul(c), mud(c))

¥
Foreach(C by 1, C by 1){(i,j) =>
sigma_blk(i,j) = sub(i) * sub(j)
¥
sigma_blk
H(a,b) =>a + b}
H((a,b) => a + b }



TensorFlow to FPGA

Dataflow graph of
domain-specific operators ngh Level
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graph of parallel patterns Parallel Pattern IR
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Spatial Compiler

Chisel
FPGA Tools

FPGA Configuration




Programmability vs. Energy Efficiency

Data normalized to a 28nm technology
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FPGA: Good, Bad and Ugly

Bit-level reconfigurable logic elements + static interconnect
m  Flexibility

No instruction overhead

Performance / Watt

Power

Clock Logic

m  Fine-grained reconfigurability overheads: 20%  20%

° .
m >60% area and power spent on interconnect T

Interconnect

m  Long compile times (days) 80% 60%

Design reconfigurable hardware with the right abstractions



DARPA Software Defined Hardware (SDH) Program
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The goal of the SDH
program is to build runtime-
reconfigurable hardware
and software that enables
near ASIC performance
without sacrificing
programmability for data-
intensive algorithms.



Plasticine: A Reconfigurable Architecture for Parallel

Patterns

High-level Parallel Patterns (Spatial) Plasticine Accelerator

Coalescing
Unit

(

il

I
5
N

groupBy
[

Address Pattern Pattern
|Coalescing| Coalescing s | Switch emol Compute
i o (48] Generstion |3 e it

Tiled architecture with reconfigurable SIMD pipelines,
distributed scratchpads, and statically programmed switches

key1 key2 key3

Prabhakar, Zhang, et. al. ISCA 2017

High Performance

Energy Efficiency

Up to 95X Performance

» Up to 77X Perf/W

vs. Stratix V FPGA

h:(‘ »
Raghu Prabhakar Yaqi Zhang



Plasticine: PCU

Coalescing
Unit

Coalescing
Unit

Address

Generation

Unit
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Plasticine: PMU

Coalescing
Unit

Coalescing
Unit

Address

Generation

Unit

PMU

's | switch

Scalar
Inputs Scalar Scratchpad Scalar
FIFO > SRAM Outputs
ZE'_-. Vector
Vector " Banking SRAM Outputs
Inputs Ve Buffering
FIFO Logic SRAM
Control SRAM
Inputs Counters Control
Control T Outputs
Block S N"C7 | )
Locality, Banking,
Buffering
On-chip Scratchpads +
patt — Configurable banking
attern ags . A
PMU | Memory pcu | Compute Address partitioning for multi-
Unit Unit buffering




Mapping Spatial to Plasticine
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Plasticine Area Breakdown

Interconnect
17%

-

PMU
30%




We Can Have It All with Software 2.0!

Productivity

Power

Performance

Programmability

Portability

ML Algorithms (e.g. Hogwild!, HALP)

ML Developer

High Performance DSLs (e.g. OptiML, TensorFlow, PyTorch)

High-Le ompiler

Accelerator IR (e.g. Spatial)

Low-Level Compiler

Architectures (e.g. TPU, SDH)



Thank You!

m Questions?



