
THE ZCACHE: DECOUPLING

WAYS AND ASSOCIATIVITY

Daniel Sanchez and Christos Kozyrakis

Stanford University

MICRO-43, December 6th 2010

Executive Summary

� Mitigating the memory wall requires large, highly associative caches

� Last-level caches take ~50% chip area, have 24-32 ways in latest CMPs

� More ways � large energy, latency and area overheads

ZCache: A highly associative cache with a low number of ways

2

� ZCache: A highly associative cache with a low number of ways

� Improves associativity by increasing number of replacement candidates

� Retains low energy/hit, latency and area of caches with few ways

� Based on skew-associative caches and cuckoo hashing

� Analytical framework explains why zcache works

� Associativity depends on number of replacement candidates, not ways or
locations a block can be in

Outline

� Introduction

� ZCache

� Analytical Framework

� Evaluation

3

� Evaluation

Introduction

� Uses of high associativity:

� Improve performance by reducing conflict misses

� Partitioning, pinning, storing speculative data (e.g. TM, TLS)

� Increasing number of ways affects area, delay, energy

4

� Increasing number of ways affects area, delay, energy

0

10

20

30

40

50

Area Hit Latency Hit Energy

In
cr
e
a
se
 o
v
e
r
4
-w

a
y
 (
%
)

16-way 32-way

-4

-2

0

2

4

6

8

10

rand0 ammp_m

IP
C
 i
m
p
ro
v
e
m
e
n
t

v
s
4
-w

a
y
 (
%
)

16-way 32-way
101%

Techniques for high associativity (1/2):
Increase number of locations

� Allow multiple locations per way

� Column-associative caches [Agarwal93], set-balancing
cache [Rolan09], …

� Hit latency ↑, hit energy ↑

5

� Use a victim cache

� VC [Jouppi90], Scavenger [Basu07], …

� Area ↑, hit latency ↑, hit energy ↑

� Use indirection in the tag array

� IIC [Hallnor00], V-Way cache [Qureshi05]

� Area ↑, hit latency ↑, hit energy ↑

Techniques for high associativity (2/2):
Better hashing

� Use a hash function to index the cache

� Simple hashing significantly reduces conflicts [Karbutli04]

� Skew-associative caches [Seznec93]
� Index each way using a different hash function

A line conflicts with a different set of lines on each way, reducing

6

� A line conflicts with a different set of lines on each way, reducing
conflict misses

� No sets, cannot use replacement policy that relies on set ordering

H

Line
address

Set
index

Hash
function

Way0 Way1 Way2

Indexes

H0

H1

H2

Line
address

Way0 Way1 Way2

Outline

� Introduction

� ZCache

� Analytical Framework

� Evaluation

7

� Evaluation

The ZCache Design

� Lookups and hits happen as in
a skew-associative cache

Indexes

H0

H1

H2

Line
address

8

Way0 Way1 Way2

� Misses exploit the multiple hash functions to obtain an
arbitrarily large number of replacement candidates

� Phase 1: Walk the tag array, get best candidate

� Phase 2: Move a few lines to fit everything

� This happens infrequently (on misses) and off the critical path

� Draws on prior research in cuckoo hashing

D

M

ZCache Replacement
9

U

F

N

B

P

A

V

C

D

E

K

Z

M

X

J

R

H

Q

H0

H1

0

1

2

3

4

5

Y

5

4

A

Way 0 Way 1 Way 2

� Start replacement process
while fetching Y

A

G

Z

T

Q

IH2

L O S

5

6

7

0
A

MISS

ZCache Replacement

U

F

N

B

P

A

V

C

D

E

K

Z

M

X

J

R

H

Q

H0

H1

0

1

2

3

4

5

Y

5

4

10

Way 0 Way 1 Way 2

D

M

AA

G

Z

T

Q

IH2

L O S

5

6

7

0
A

ZCache Replacement
11

U

F

N

B

P

A

V

C

D

E

K

Z

M

X

J

R

H

Q

H0

H1

0

1

2

3

4

5

A

5

2

Way 0 Way 1 Way 2

A

K

X

� Instead of evicting A, can move it and evict K or X

A

G

Z

T

Q

IH2

L O S

5

6

7

1
A

ZCache Replacement

U

F

N

B

P

A

V

C

D

E

K

Z

M

X

J

R

H

Q

H0

H1

0

1

2

3

4

5

12

Way 0 Way 1 Way 2

A

G

Z

T

Q

IH2

L O S

5

6

7

Addr Y A D M

H0 5 5 3 2

H1 4 2 4 5

H2 0 1 7 0

1st -level

candidates

ZCache Replacement

U

F

N

B

P

A

V

C

D

E

K

Z

M

X

J

R

H

Q

H0

H1

0

1

2

3

4

5

B

K

X

P

Z

13

Way 0 Way 1 Way 2

A

G

Z

T

Q

IH2

L O S

5

6

7

1st -level

candidates

Addr Y A D M

H0 5 5 3 2

H1 4 2 4 5

H2 0 1 7 0

Z

S

B K X P Z S

2nd -level

candidates

ZCache Replacement

U

F

N

B

P

A

V

C

D

E

K

Z

M

X

J

R

H

Q

H0

H1

0

1

2

3

4

5

14

Way 0 Way 1 Way 2

A

G

Z

T

Q

IH2

L O S

5

6

7

Addr Y A D M B K X P Z S

H0 5 5 3 2 3 7 4 2 6 1

H1 4 2 4 5 6 2 3 3 5 2

H2 0 1 7 0 1 0 1 5 3 7

ZCache Replacement

Y

A

K X

D

B Z

M

PS

15

L M N E T X G RE QF K

Addr Y A D M B K X P Z S

H0 5 5 3 2 3 7 4 2 6 1

H1 4 2 4 5 6 2 3 3 5 2

H2 0 1 7 0 1 0 1 5 3 7

Chosen by replacement policy (e.g. LRU block)

ZCache Replacement

Y

A

K X

16

D

B Z

M

PS

L M N E

U

F

N

B

P

A

G

V

C

D

E

K

Z

T

M

X

J

R

H

Q

I

L O S

Y

21 3

4

T X G RE QF K

ZCache Replacement

Y

A

K X

17

D

B Z

M

PS

L M N E

U

F

B

P

A

G

V

C

D

E

K

Z

T

M

X J

R

H

Q

I

L O S

Y

T X G RE QF K

ZCache Replacement
18

� Hits always take a single lookup

U

F

B

P

A

V

C

E

K

M

R

H
H0 5

M 0

1

2

Way 0 Way 1 Way 2

B

G

D

E

Z

T

X J

R

Q

I

L O S

Y

H1

H2

Y 4

0

HIT

D

Y

3

4

5

6

7

ZCache Implementation Overview

� Replacements take place:

� Off the critical path

� Concurrently with other operations

� Walk accesses are pipelined

� Do not saturate tag bandwidth

No effect
on hit latency

19

� Do not saturate tag bandwidth
in practice

� Energy per miss mostly determined by walk
� Similar to set-associative cache of same associativity

� Cheap to implement
� SRAM with 10s of bits to track candidates

� Leverages existing MSHRs

� See paper for more details

Number of Candidates

� An L-level walk on a W-way zcache gets R candidates:

∑
=

−⋅=
L

n

n
WWR

0

)1(

2 3 4 8

20

L
W 2 3 4 8

0 2 3 4 8

1 4 9 16 64

2 6 21 52 456

� Few ways (W=4) give many candidates with shallow walks

� Ratio of tag bandwidth vs bandwidth of next level limits
number of candidates

L
W

Outline

� Introduction

� ZCache

� Analytical Framework

� Evaluation

21

� Evaluation

An Analytical Associativity Framework

� Comparing associativity across cache designs is hard

� Ways do not mean much

� Conflict misses are workload and architecture-specific

� Goals

22

� Goals

� Find a general way to characterize associativity

� Analyze what determines the performance of a zcache

General Cache Model

� Cache array:

� Holds tags and data

� Implements associative lookup by address

� On a replacement, gives list of replacement candidates

23

� On a replacement, gives list of replacement candidates

� Model assumes nothing about array organization

� Replacement policy: Maintains a global rank of which
cache blocks to replace

� All policies conceptually do (LRU, LFU, OPT, …)

� Implementation does not need to

Associativity Distribution

� Eviction priority: Rank of a block given by the replacement
function, normalized to [0,1]

� Higher is better to evict

24

� Associativity distribution: Probability distribution of the
eviction priorities of evicted blocks

� Higher associativity � distribution more skewed towards 1.0

� Measures how well the array does, not the replacement policy

� For good performance, replacement policy also needs to do a good job!

Uniformity Assumption

� If the cache array gives R replacement candidates with
uniformly distributed priorities,

},...,max{

]1,0[...~,...,

1

1

= EEA

UdiiEE

R

R

25

]1,0[,)()(

},...,max{ 1

∈=≤=

=

xxxAPxF

EEA

R

A

R

Associativity Distributions in Practice

� Set-associative caches do
significantly worse than UA

26

� Hashing (H3) improves
associativity, but still
sensibly worse than UA

Associativity Distributions for ZCaches

� Skew-associative caches
(1-level zcaches) are very
close to UA

27

close to UA

� Increasing candidates but
not ways still yields distrib
very close to UA

Analytical Framework: Conclusions

� In caches with good hashing, the number of replacement
candidates R determines associativity

� ZCaches provide large number of candidates with few

28

� ZCaches provide large number of candidates with few
ways � Decouple ways and associativity

Outline

� Introduction

� ZCache

� Analytical Framework

� Evaluation

29

� Evaluation

Methodology

� Infrastructure:

� CACTI-based models for cache cost estimates

� McPAT for full-CMP area, power estimations

� Microarchitectural simulation with Pin-based simulator

� Target system:

30

� Target system:
� 32 in-order x86-64 cores (single-issue, 2GHz, 32KB I/D L1s)

� Fully shared L2, 8MB, 8 1MB banks (set-assoc/zcache)

� All L2 caches use hashing (H3)

� 72 workloads:
� Multithreaded: PARSEC, SPECOMP

� Multiprogrammed: SPECCPU2006

� See paper for more details

Cache Costs

20

30

40

50

60

2

3

4

5

6

0.4

0.6

0.8

1

1.2

1.4

2

3

4

SA 4-way SA 16-way SA 32-way Z 4/16 Z 4/52

31

� Each design is optimized for area*latency*energy

� ZCaches:

� Retain hit area, hit latency, hit energy of a 4-way SA cache

� Energy per miss comparable to similarly-associative SA cache

0

10

20

Area (mm2)

0

1

2

Hit Latency (ns)

0

0.2

0.4

Hit Energy (nJ)

0

1

Miss Energy (nJ)

Performance and Energy-Efficiency

0

5

10

15

20

IP
C
 i
m
p
ro
v
e
m
e
n
t

v
s
4
-w

a
y
 (
%
)

SetAssoc 32-way Z 4-way/52-rc

32

-5

0

ammp_m rand0 cactusADM gmean (72) gmean (10)

IP
C

v
s

-5

0

5

10

15

ammp_m rand0 cactusADM gmean (72) gmean (10)

B
IP
S
/W

im
p
ro
v

v
s
4
-w

a
y
 (
%
)

Conclusions

� ZCaches enable efficient highly-associative caches

� Low number of ways

� Associativity gained by increasing replacement candidates

� Costs of high associativity (energy, tag bandwidth) paid only

33

� Costs of high associativity (energy, tag bandwidth) paid only
on misses

� Analytical framework shows that replacement
candidates determine associativity

THANK YOU FOR
YOUR ATTENTION

QUESTIONS?

Backup: Replacement Timeline
35

5 3 2 7 4 6 1 4 5 4 5
4 2 5 6 3 3 2
0 1 7 1 0 5 3 1 1

0 5 10 15 20 105

…

Time

Way0
Way1
Way2A

d
d

re
ss

 f
o
r

re
a

d
/
w

ri
te

Miss Walk Relocations

A B P L N G F N A X Y
D K Z T E E K
M X S X M Q R X A

A N A X Y
D
M X A

Y N Y

…

…

…

Way0
Way1
Way2

Way0
Way1
Way2

A
d

d
re

ss
 f

o
r

Ta
g

 p
o
rt

o
ut

/
in

D
a

ta
 p

o
rt

o
ut

/
in

Memory bus

Fetch on miss Writeback (if needed) Miss response

Backup: LRU with coarse-grain timestamps
36

� 8-bit timestamp per tag

� Tag each block with a global timestamp counter

� Increment timestamp every k=5% accesses

� Wraparounds are rare� Wraparounds are rare

Ti
m

e
st

a
m

p

d

is
tr

ib

Timestamp 2550

Current TS

