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Executive Summary

� Mitigating the memory wall requires large, highly associative caches

� Last-level caches take ~50% chip area, have 24-32 ways in latest CMPs

� More ways � large energy, latency and area overheads

ZCache: A highly associative cache with a low number of ways
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� ZCache: A highly associative cache with a low number of ways

� Improves associativity by increasing number of replacement candidates

� Retains low energy/hit, latency and area of caches with few ways

� Based on skew-associative caches and cuckoo hashing

� Analytical framework explains why zcache works

� Associativity depends on number of replacement candidates, not ways or 
locations a block can be in



Outline

� Introduction
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� Evaluation
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� Evaluation



Introduction

� Uses of high associativity:

� Improve performance by reducing conflict misses

� Partitioning, pinning, storing speculative data ( e.g. TM, TLS)

� Increasing number of ways affects area, delay, energy
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� Increasing number of ways affects area, delay, energy
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Techniques for high associativity (1/2): 
Increase number of locations

� Allow multiple locations per way

� Column-associative caches [Agarwal93], set-balancing
cache [Rolan09], …

� Hit latency ↑, hit energy ↑
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� Use a victim cache

� VC [Jouppi90], Scavenger [Basu07], …

� Area ↑, hit latency ↑, hit energy ↑

� Use indirection in the tag array

� IIC [Hallnor00], V-Way cache [Qureshi05]

� Area ↑, hit latency ↑, hit energy ↑



Techniques for high associativity (2/2):
Better hashing

� Use a hash function to index the cache

� Simple hashing significantly reduces conflicts [Karbutli04]

� Skew-associative caches [Seznec93]
� Index each way using a different hash function

A line conflicts with a different set of lines on each way, reducing 
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� A line conflicts with a different set of lines on each way, reducing 
conflict misses

� No sets, cannot use replacement policy that relies on set ordering
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� Evaluation



The ZCache Design

� Lookups and hits happen as in
a skew-associative cache

Indexes
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Way0 Way1 Way2

� Misses exploit the multiple hash functions to obtain an 
arbitrarily large number of replacement candidates

� Phase 1: Walk the tag array, get best candidate

� Phase 2: Move a few lines to fit everything

� This happens infrequently (on misses) and off the critical path

� Draws on prior research in cuckoo hashing
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ZCache Replacement
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ZCache Replacement
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ZCache Replacement
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ZCache Replacement
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ZCache Replacement
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ZCache Replacement
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ZCache Replacement
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Addr Y A D M B K X P Z S
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Chosen by replacement policy (e.g. LRU block)



ZCache Replacement
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ZCache Replacement
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ZCache Replacement
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� Hits always take a single lookup
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ZCache Implementation Overview

� Replacements take place:

� Off the critical path

� Concurrently with other operations

� Walk accesses are pipelined

� Do not saturate tag bandwidth

No effect
on hit latency
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� Do not saturate tag bandwidth
in practice

� Energy per miss mostly determined by walk
� Similar to set-associative cache of same associativity

� Cheap to implement
� SRAM with 10s of bits to track candidates

� Leverages existing MSHRs

� See paper for more details



Number of Candidates

� An L-level walk on a W-way zcache gets R candidates:
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L
W 2 3 4 8

0 2 3 4 8

1 4 9 16 64

2 6 21 52 456

� Few ways (W=4) give many candidates with shallow walks

� Ratio of tag bandwidth vs bandwidth of next level limits 
number of candidates

L
W
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� Evaluation



An Analytical Associativity Framework

� Comparing associativity across cache designs is hard

� Ways do not mean much

� Conflict misses are workload and architecture-specific

� Goals
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� Goals

� Find a general way to characterize associativity

� Analyze what determines the performance of a zcache



General Cache Model

� Cache array:

� Holds tags and data

� Implements associative lookup by address

� On a replacement, gives list of replacement candidates
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� On a replacement, gives list of replacement candidates

� Model assumes nothing about array organization

� Replacement policy: Maintains a global rank of which 
cache blocks to replace

� All policies conceptually do (LRU, LFU, OPT, …)

� Implementation does not need to



Associativity Distribution

� Eviction priority: Rank of a block given by the replacement 
function, normalized to [0,1]

� Higher is better to evict
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� Associativity distribution: Probability distribution of the 
eviction priorities of evicted blocks

� Higher associativity � distribution more skewed towards 1.0

� Measures how well the array does, not the replacement policy

� For good performance, replacement policy also needs to do a good job!



Uniformity Assumption

� If the cache array gives R replacement candidates with 
uniformly distributed priorities,
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Associativity Distributions in Practice

� Set-associative caches do 
significantly worse than UA
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� Hashing (H3) improves 
associativity, but still 
sensibly worse than UA



Associativity Distributions for ZCaches

� Skew-associative caches  
(1-level zcaches) are very 
close to UA
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close to UA

� Increasing candidates but 
not ways still yields distrib
very close to UA



Analytical Framework: Conclusions

� In caches with good hashing, the number of replacement 
candidates R determines associativity

� ZCaches provide large number of candidates with few 
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� ZCaches provide large number of candidates with few 
ways � Decouple ways and associativity
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Methodology

� Infrastructure:

� CACTI-based models for cache cost estimates

� McPAT for full-CMP area, power estimations

� Microarchitectural simulation with Pin-based simulator

� Target system:
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� Target system:
� 32 in-order x86-64 cores (single-issue, 2GHz, 32KB I/D L1s)

� Fully shared L2, 8MB, 8 1MB banks (set-assoc/zcache)

� All L2 caches use hashing (H3)

� 72 workloads: 
� Multithreaded: PARSEC, SPECOMP

� Multiprogrammed: SPECCPU2006

� See paper for more details



Cache Costs
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� Each design is optimized for area*latency*energy

� ZCaches:

� Retain hit area, hit latency, hit energy of a 4-way SA cache

� Energy per miss comparable to similarly-associative SA cache
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Performance and Energy-Efficiency
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Conclusions

� ZCaches enable efficient highly-associative caches

� Low number of ways

� Associativity gained by increasing replacement candidates

� Costs of high associativity (energy, tag bandwidth) paid only 
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� Costs of high associativity (energy, tag bandwidth) paid only 
on misses

� Analytical framework shows that replacement 
candidates determine associativity
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Backup: Replacement Timeline
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Backup: LRU with coarse-grain timestamps
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� 8-bit timestamp per tag

� Tag each block with a global timestamp counter

� Increment timestamp every k=5% accesses

� Wraparounds are rare� Wraparounds are rare
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