
Dynamic Memory Allocation Optimization

• Inner patterns may require dynamic allocations

• Allocate a temporary space for the entire threads at once

• Assign a proper offset / stride values for memory coalescing

(depends on the mapping decision from the analysis)

Locality-Aware Mapping of

Nested Parallel Patterns on GPUs

HyoukJoong Lee*, Kevin Brown*, Arvind Sujeeth*, Tiark Rompf †‡, Kunle Olukotun*
*Pervasive Parallelism Lab (http://ppl.stanford.edu), Stanford University

†Purdue University, ‡Oracle Labs

Motivation Compiler Flow: Analysis and Optimizations

Our Contributions

High-Level Languages for GPUs

• Provide higher productivity and portable performance

• Using parallel patterns (e.g., map, reduce, groupby) is

becoming popular

• Parallel patterns encode high-level information on

parallelism and synchronization

Challenge: Parallel patterns are often nested,

 which are difficult to map on GPUs

• Many factors to consider together (e.g., memory

coalescing, thread divergence, dynamic allocations)

• Large space of possible mappings

• Compilers typically support only a fixed mapping strategy,

which is not always efficient

• 1D mapping

• Thread-block / thread mapping

• Warp-based mapping

Evaluation (Nvidia K20c)

Rodinia Benchmark Suite

Comparison to 2D Strategies

• Applications are written in different ways (row/col major)

• Our compiler is not sensitive to how the application is written

Real World Applications

Performance vs Score

• A: best performance region, B: warp-based mapping,

 C: false negatives

1

10

100

1000

0.00 0.50 1.00 1.50 2.00 2.50

Ex
e

cu
ti

o
n

 T
im

e
 (

Lo
g

Sc
al

e
)

Score

A

C

B

Mapping Parameters

• Dimension (x, y, z, ..)

• A logical dimension assigned to the index domain of a nest level

• Compiler controls how indices in each dimension are mapped to

hardware threads

• Block Size (N)

• Number of threads assigned for a given dimension

• Degree of Parallelism (DOP)

• The amount of parallel computations enabled by a mapping

• Span(k): assign k computations to each thread on a given index

domain (decreases DOP by a factor of k)

• Span(all): assign all indices of a given index domain to the

threads within a single block

• Split(k): assign k blocks to a dimension by splitting span(all) in

order to increases DOP by a factor of k, at the cost of additional

kernel launch

• Example: 2D index domain of size (N,M)

• Split(3) on Dim x and Span(2) on Dim y, with an additional

combiner kernel

• Equivalent mapping parameters for warp-based mapping

Mapping Constraints

• Generated while traversing the IR to prune the mapping space

• Weights are associated with each constraints

• Example constraints

• For patterns that generate sequential memory requests,

assign Dim(x) and block size multiple of WARP_SIZE (32)

• For patterns that require global synchronization (e.g.,

Reduce), assign Span(all)

Search for an Efficient Mapping

• Calculate the score of possible mappings based on constraints

• For unknown information at compile time, assume default

values (e.g., default loop size is 1000, branching factor 0.5)

• Pick one with the best score and adjust DOP

• Detailed decisions can also be adjusted at runtime

• Changes that can be made without changing the mapping

structure (e.g., thread-block size)

Pattern1 with i in Domain(0,I) {
 array1D(i) #weight: I
 Pattern2 with j in Domain(0,J) {
 array2D(i,j) #weight: I*J
} }

(a) offset = m * N

 stride = 1

(b) offset = m

 stride = N

N

M

M

N

1.2

0.7
0.4

1.0
1.4

1.7

2.3

1.2

4.6

1.8
2.3

0.0

1.0

2.0

3.0

4.0

5.0

6.0

Nearest
Neighbor

Gaussian
Elimination

BFS Hotspot Mandelbrot Srad Pathfinder LUD

N
o

rm
al

iz
e

d
 E

xe
cu

ti
o

n
 T

im
e

Manual MultiDim 1-D
15.7 40.1 25.4 19.1 60.8

2.0

3.6

0.36

0.2
0.4

0.08
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

QPSCD Hogwild MSMBuilder Naïve Bayes

N
o

rm
al

iz
e

d
 E

xe
cu

ti
o

n
 T

im
e

8 CPU 1D GPU MultiDim

1.13
0.85

Data Transfer

// Pagerank algorithm

G.nodes map { n =>
 nbrsWeights = n.nbrs map { w =>
 getPrevPageRank(w) / w.degree
 }
 sumWeights = nbrsWeights reduce { (a,b) => a + b }
 ((1 - damp) / numNodes + damp * sumWeights
}

1.1

1.6

1.1

1.5

1.8

1.0 1.0

1.5

1.0

1.5
1.6

1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Gaussian
Elimination

(R)

Gaussian
Elimination

(C)

Hotspot
(R)

Hotspot
(C)

Mandelbrot
(R)

Mandelbrot
(C)

Srad
(R)

Srad
(C)

N
o

rm
al

iz
e

d
 E

xe
cu

ti
o

n
 T

im
e

MultiDim ThreadBlock/Thread Warp-based
9.1 5.6 9.6 6.6

Code
Generation

IR Traversal &
Generate

Constraints

Search for an
Efficient Mapping

(Score Calculationl)

Compiler
Front-end

Application Mapping Constraints
(e.g., Dim(x) for coalescing)

Memory Optimization
(layout, shared mem)

A Set of Templates
for Each Pattern

Selected

Mapping
IR IR with

Constraints

Pattern (I) Dim(y), Size(16), Span(1)
 Pattern (J) Dim(x), Size(32), Span(all)

collection map { e => //size M
 // requires allocation at each e
 res = map { /* some func */ } //size N
 // uses res
}

:

Split (3)

2D Block

Span

 (2)
N

32

2D Block 2D Block

: :

M

2D Block

:

Combiner kernel

partial results • Define mapping parameters that are general

enough to cover previous mapping strategies

• Present an analysis to automatically find an

efficient mapping for nested parallel patterns,

maximizing locality and resource utilization

• Present compiler optimizations that interact with

the mapping analysis to further improve

performance, avoiding dynamic allocations and

using shared memory

• Implemented a compiler and show with a set of

applications that our analysis and optimizations

automatically generate efficient GPU code

http://ppl.stanford.edu/

