Locality-Aware Mapping of Nested Parallel Patterns on GPUs
HyoukJoong Lee*, Kevin Brown*, Arvind Sujeeth*, Tiark Rompf ${ }^{\ddagger \ddagger}$, Kunle Olukotun*
*Pervasive Parallelism Lab (http://ppl.stanford.edu), Stanford University \dagger Purdue University, \ddagger Oracle Labs

Motivation

High-Level Languages for GPUs

- Provide higher productivity and portable performance
- Using parallel patterns (e.g., map, reduce, groupby) is becoming popular
- Parallel patterns encode high-level information on parallelism and synchronization

Challenge: Parallel patterns are often nested, which are difficult to map on GPUs

// Pagerank algorithm

G. nodes $\sqrt{\text { map }\{~} \mathrm{n} \Rightarrow$
nbrsWeights $=n$. nbrs map $\{w=>$
getPrevPageRank(w)/w.degree
sumweights $=$ nbrsWeights reduce $\{(a, b)=>a+b\}$
(1 - damp) / numNodes + damp * sumweights

- Many factors to consider together (e.g., memory coalescing, thread divergence, dynamic allocations)
- Large space of possible mappings
- Compilers typically support only a fixed mapping strategy, which is not always efficient
-1D mapping
- Thread-block / thread mapping
- Warp-based mapping

Our Contributions

- Define mapping parameters that are general enough to cover previous mapping strategies
- Present an analysis to automatically find an efficient mapping for nested parallel patterns, maximizing locality and resource utilization
- Present compiler optimizations that interact with the mapping analysis to further improve performance, avoiding dynamic allocations and using shared memory
- Implemented a compiler and show with a set of applications that our analysis and optimizations automatically generate efficient GPU code

Mapping Parameters

- Dimension ($\mathrm{x}, \mathrm{y}, \mathrm{z}, .$.)
- A logical dimension assigned to the index domain of a nest level
- Compiler controls how indices in each dimension are mapped to hardware threads
- Block Size (N)
- Number of threads assigned for a given dimension

- Degree of Parallelism (DOP)

- The amount of parallel computations enabled by a mapping
- Span(k): assign k computations to each thread on a given index domain (decreases DOP by a factor of k)
- Span(all): assign all indices of a given index domain to the threads within a single block
- Split(k): assign k blocks to a dimension by splitting span(all) in order to increases DOP by a factor of k, at the cost of additiona kernel launch
- Example: 2D index domain of size (N, M)
- Split(3) on Dim x and Span(2) on Dim y , with an additional combiner kernel

- Equivalent mapping parameters for warp-based mapping

[^0]Mapping Constraints

- Generated while traversing the IR to prune the mapping space
- Weights are associated with each constraints

$$
\begin{aligned}
& \text { Pattern2 with } j \text { in } \operatorname{Domain}(0, J) \text { \{ } \\
& \text { array2D(i,j) \#weight: I*J } \\
& \text { \} \} }
\end{aligned}
$$

- For patterns that generate sequential memory requests, assign $\operatorname{Dim}(x)$ and block size multiple of WARP_SIZE (32) - For patterns that require global synchronization (e.g., Reduce), assign Span(all)

Search for an Efficient Mapping

- Calculate the score of possible mappings based on constraint - For unknown information at compile time, assume default values (e.g., default loop size is 1000 , branching factor 0.5)
- Pick one with the best score and adjust DOP
- Detailed decisions can also be adjusted at runtime
- Changes that can be made without changing the mapping structure (e.g., thread-block size)

Dynamic Memory Allocation Optimization

- Inner patterns may require dynamic allocations
collection map $\{$ e $=>\quad / /$ size M // requires allocation at each e res = map \{ /* some func */ \} \} // uses res
- Allocate a temporary space for the entire threads at once
- Assign a proper offset / stride values for memory coalescing (depends on the mapping decision from the analysis)

(b) offset $=m$ stride $=\mathrm{N}$

Evaluation (Nvidia K20c)

Rodinia Benchmark Suite

Comparison to 2D Strategies

- Applications are written in different ways (row/col major) - Our compiler is not sensitive to how the application is written

Real World Applications

Performance vs Score

- A: best performance region, B: warp-based mapping C : false negatives

[^0]: Pattern (I)
 $\operatorname{Dim}(y), \operatorname{Size}(16), \operatorname{Span}(1)$
 $\operatorname{Dim}(x), \operatorname{Size}(32), \operatorname{Span}(\operatorname{lll})$

