
Dynamic Memory Allocation Optimization 

• Inner patterns may require dynamic allocations 

 

 

 

 

• Allocate a temporary space for the entire threads at once 

• Assign a proper offset / stride values for memory coalescing 

(depends on the mapping decision from the analysis) 
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Motivation Compiler Flow: Analysis and Optimizations 

Our Contributions 

High-Level Languages for GPUs 

• Provide higher productivity and portable performance 

• Using parallel patterns (e.g., map, reduce, groupby) is 

becoming popular 

• Parallel patterns encode high-level information on 

parallelism and synchronization 

 

Challenge: Parallel patterns are often nested,  

                   which are difficult to map on GPUs 

 

 

 

 

 

 

• Many factors to consider together (e.g., memory 

coalescing, thread divergence, dynamic allocations) 

• Large space of possible mappings 

• Compilers typically support only a fixed mapping strategy, 

which is not always efficient 

• 1D mapping 

• Thread-block / thread mapping 

• Warp-based mapping 

Evaluation (Nvidia K20c) 

Rodinia Benchmark Suite 

 

 

 

 

 

Comparison to 2D Strategies 

• Applications are written in different ways (row/col major) 

• Our compiler is not sensitive to how the application is written 

 

 

 

 

 

 

 

Real World Applications 

 

 

 

 

 

 

Performance vs Score 

• A: best performance region, B: warp-based mapping,  

   C: false negatives 
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Mapping Parameters 

• Dimension (x, y, z, ..) 

• A logical dimension assigned to the index domain of a nest level 

• Compiler controls how indices in each dimension are mapped to 

hardware threads  

• Block Size (N) 

• Number of threads assigned for a given dimension 

• Degree of Parallelism (DOP) 

• The amount of parallel computations enabled by a mapping 

• Span(k): assign k computations to each thread on a given index 

domain (decreases DOP by a factor of k) 

• Span(all): assign all indices of a given index domain to the 

threads within a single block  

• Split(k): assign k blocks to a dimension by splitting span(all) in 

order to increases DOP by a factor of k, at the cost of additional 

kernel launch 

• Example: 2D index domain of size (N,M) 

• Split(3) on Dim x and Span(2) on Dim y, with an additional 

combiner kernel 

 

 

 

 

 

 

 

 

 

• Equivalent mapping parameters for warp-based mapping 

Mapping Constraints 

• Generated while traversing the IR to prune the mapping space 

• Weights are associated with each constraints 

 

 

 

 

 

• Example constraints 

• For patterns that generate sequential memory requests, 

assign Dim(x) and block size multiple of WARP_SIZE (32) 

• For patterns that require global synchronization (e.g., 

Reduce), assign Span(all) 
 

Search for an Efficient Mapping 

• Calculate the score of possible mappings based on constraints 

• For unknown information at compile time, assume default 

values (e.g., default loop size is 1000, branching factor 0.5) 

• Pick one with the best score and adjust DOP 

• Detailed decisions can also be adjusted at runtime 

• Changes that can be made without changing the mapping 

structure (e.g., thread-block size) 

 

Pattern1 with i in Domain(0,I) { 
    array1D(i)         #weight: I 
    Pattern2 with j in Domain(0,J) { 
        array2D(i,j)   #weight: I*J 
}   } 

(a) offset = m * N 

      stride = 1 

(b) offset = m 

      stride = N 
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Manual MultiDim 1-D
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8 CPU 1D GPU MultiDim
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Data Transfer 

// Pagerank algorithm 
 
G.nodes map { n => 
    nbrsWeights = n.nbrs map { w => 
        getPrevPageRank(w) / w.degree  
    } 
    sumWeights = nbrsWeights reduce { (a,b) => a + b } 
    ((1 - damp) / numNodes + damp * sumWeights 
} 
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MultiDim ThreadBlock/Thread Warp-based
9.1 5.6 9.6 6.6 

Code  
Generation 

IR Traversal & 
Generate 

Constraints 

Search for an 
Efficient Mapping 

(Score Calculationl) 
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Application Mapping Constraints 
(e.g., Dim(x) for coalescing) 

Memory Optimization 
(layout, shared mem) 

A Set of Templates  
for Each Pattern 

Selected 

Mapping 
IR IR with  

Constraints 

Pattern (I)           Dim(y), Size(16), Span(1) 
     Pattern (J)      Dim(x), Size(32), Span(all) 

collection map { e =>              //size M 
  // requires allocation at each e 
  res = map { /* some func */ }    //size N 
  // uses res  
} 
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Split (3) 

2D Block 

Span 
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Combiner kernel 

partial results • Define mapping parameters that are general 

enough to cover previous mapping strategies 
 

• Present an analysis to automatically find an 

efficient mapping for nested parallel patterns, 

maximizing locality and resource utilization 
 

• Present compiler optimizations that interact with 

the mapping analysis to further improve 

performance, avoiding dynamic allocations and 

using shared memory 
 

• Implemented a compiler and show with a set of 

applications that our analysis and optimizations 

automatically generate efficient GPU code 

http://ppl.stanford.edu/

