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Overview
Everyone uses Gibbs sampling!
. De facto Markov Chain Monte Carlo method for inference.
. Works very well in practice.
. Used by many systems such as Factorie, OpenBugs, PGibbs,

and DeepDive — including competition-winners.

But it’s hard to tell when Gibbs sampling will work!
. Standard metric is mixing time, the amount of time needed to

produce samples that are “close” to the true distribution.
. Finding the mixing time is hard — there’s little theory.

Our contribution: fast mixing with hierarchy width
. Introduce a new factor graph width: the hierarchy width.
. Hierarchy width is a structural property of the factor graph.
. Bounding the hierarchy width is a sufficient condition to en-

sure that Gibbs sampling will mix in polynomial time.
. This gives us new understanding of a class of factor graphs

for which Gibbs sampling is guaranteed to be feasible.

Problem Setup

Gibbs sampling: Sample from distribution π over variables V
Require: Initial state Xi for i ∈ V , number of samples T .

for t = 0 to T − 1 do
Select it uniformly from V .
Resample Xit conditionally from π given XV \{it}.
Output sample zt ← X .

end for

We study Gibbs sampling on discrete-valued factor graphs. A
factor graph is a graphical model over a set of variables V and
factors Φ that has distribution

π(I) =
1

Z
exp

∑
φ∈Φ

φ(I)


where I is a world — an assignment of a value to each variable
in V — and Z is the constant required to make π a distribution.

We focus on bounding the mixing time, the first time t at which
the estimated distribution µt is close to the true distribution π.

tmix = min

{
t : max

A⊂Ω
|µt(A)− π(A)| ≤ 1

4

}
.

Hierarchy Width and Rapid Mixing

The hierarchy width hw(G) of a factor
graphG is defined such that, for any con-
nected factor graph G = 〈V,Φ〉,

hw(G) = 1 + min
φ∗∈Φ

hw(〈V,Φ− {φ∗}〉),

and for any disconnected factor graph G
with connected components G1, G2, . . .,

hw(G) = max
i

hw(Gi).

All factor graphs G with no factors have

hw(〈V, ∅〉) = 0.

Main Theorem: Bounding the mixing time.
Let G = 〈V,Φ〉 be a factor graph with n variables, at most s
states per variable, e factors, and hierarchy width h. If we let

M = max
φ∈Φ

(
max
I
φ(I)−min

I
φ(I)

)
,

then we can bound the mixing time of Gibbs sampling on G
with

tmix ≤ (log(4) + n log(s) + eM)n exp(3hM).

In particular, if hM = O(log n), then Gibbs sampling mixes in
polynomial time.

Hierarchy Width Examples

Intuitively, we can think of labeling each factor with a positive integer, its level in the hierarchy. For two factors F and G to have the
same level, they must only interact through their superiors: every path from F to G must pass through a factor with a smaller label. The
hierarchy width is the minimum value, across all labellings, of the largest label. Here are some examples (labels in red).

Example: Voting model (logical).

Q

φT φF

T1 T2 · · · Tn F1 F2 · · · Fn

111111111111111111111 222222222222222222222

This model has only two (large) factors,
which can’t have the same label because
they are adjacent. Therefore, its hierarchy
width is hw(G) = 2.
. Actually mixes in O(n log n) time.

Example: Voting model (linear).

Q

T1 T2 · · · Tn F1 F2 · · · Fn

111111111111111111111 222222222222222222222 nnnnnnnnnnnnnnnnnnnnn n+1n+1n+1n+1n+1n+1n+1n+1n+1n+1n+1n+1n+1n+1n+1n+1n+1n+1n+1n+1n+1
n+2n+2n+2n+2n+2n+2n+2n+2n+2n+2n+2n+2n+2n+2n+2n+2n+2n+2n+2n+2n+2

2n2n2n2n2n2n2n2n2n2n2n2n2n2n2n2n2n2n2n2n2n

This model has 2n factors, all of which are
adjacent. Therefore, its hierarchy width is
hw(G) = 2n.

. Actually mixes in exp(Ω(n)) time.

. This means Gibbs is infeasible.

Example: Path graph.

v1 φ1 v2 φ2 v3 φ3 v4

222222222222222222222 111111111111111111111 222222222222222222222

Removing factor φ2 disconnects the graph,
so we can label both φ1 and φ3 as 2. So,
this graph has hw(G) = 2.

v1 φ1 v2 φ2 v3 φ3 v4 · · · vn

In general, the path graph has hierarchy
width hw(G) = dlog2 ne.
. Guaranteed to mix in polynomial time.

Facts about Hierarchy Width

One of the useful properties of the hierarchy width is that, for
any fixed k, computing whether a graph G has hierarchy width
hw(G) ≤ k can be done in time polynomial in the size of G.
. This is similar to many other useful graph widths.

Hierarchy width is an upper bound on the commonly-used graph
metric, hypertree width. Hierarchy width is also an upper bound
on the maximum degree of a variable in the graph.

Hierarchical Templates

A factor graph template is an abstract model that can be instanti-
ated on a dataset to produce a factor graph. They are commonly
used to construct models, including in state-of-the-art systems.

Our contribution: we introduce hierarchical templates, which
when instantiated on any dataset produce models that are guar-
anteed to mix in polynomial time.

A template consists of template factors like

φ (TweetedAbout(x̂, y), IsPopular(x̂)) .

We call x̂ a head symbol, and y a body symbol. (Details of tem-
plate instantiation appear in the paper.)

A template factor is hierarchical if all its head symbols appear
in the same order in each of its terms. (In particular, our example
above is hierarchical.) A template is hierarchical if all its factors
are hierarchical.

Hierarchical templates always mix fast.
The hierarchy width of a template instance is no greater
than the number of template factors in the template. Com-
bining this with our other result, hierarchical templates
produce models that always mix in polynomial time!

Here is an outline of our results:
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The first plot shows that, of the two voting models, the bounded-hierarchy-width model has lower error. The second plot shows the
same thing for templates on a real dataset — in particular, the model in Hierarchical 2 was used as part of a competition-winning
system (TAC KBP ’14). The third plot shows, for an ensemble of synthetic Ising models, how error varies with hierarchy width.


