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Era of Power Limited Computing 

 Mobile 

 Battery operated 

 Passively cooled 

 Data center 

 Energy costs 

 Infrastructure costs 



Computing System Power 

second

Ops
EnergyPower Op 



Heterogeneous Hardware 

 Heterogeneous HW for energy efficiency 
 Multi-core, ILP, threads, data-parallel engines, custom engines 

 

 H.264 encode study 
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Source: Understanding Sources of Inefficiency in General-Purpose Chips (ISCA’10) 

Future performance gains will mainly come from heterogeneous 

hardware with different specialized resources  



DE Shaw Research:  Anton 

D. E. Shaw et al. SC 2009, Best Paper and Gordon Bell Prize 

100 times more power efficient  

Molecular dynamics computer 



Apple A4 in the i{Pad|Phone} 

Contains CPU and GPU and … 



Heterogeneous Parallel Computing 
 Uniprocessor 

 Sequential programming 

 C 
 

 CMP (Multicore) 

 Threads and locks 

 C + (Pthreads, OpenMP) 

 

 GPU 

 Data parallel programming 

 C + (Pthreads, OpenMP) + (CUDA, OpenCL) 

 

 Cluster 

 Message passing 

 C + (Pthreads, OpenMP) + (CUDA, OpenCL) + MPI 

Intel   

Pentium 4 

Too many different programming models 
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It’s all About Energy  
(Ultimately: Money) 

 Human effort just like electrical power 
 Aim: reduce development effort, increase 

performance 
 Increase performance now means:  

 reduce energy per op  
 increase # of targets 

 Need to reduce effort per target! 







A Solution For Pervasive Parallelism 

 Domain Specific Languages (DSLs)  
 Programming language with restricted expressiveness for a particular 

domain 



Performance 

Productivity Completeness 

The Holy Grail of Performance 
Oriented Languages 



The Holy Grail of Performance 
Oriented Languages 

Performance 

Productivity Completeness 

Target 
DSLs 



Benefits of Using DSLs for Parallelism 

Productivity 

•Shield average programmers from the difficulty of parallel 
programming 

•Focus on developing algorithms and applications and not on low 
level implementation details 

Performance 

•Match generic parallel execution patterns to high level domain 
abstraction 

•Restrict expressiveness to more easily and fully extract available 
parallelism 

•Use domain knowledge for static/dynamic optimizations 

Portability and forward scalability 

•DSL & Runtime can be evolved to take advantage of latest 
hardware features 

•Applications remain unchanged 

•Allows HW vendors to innovate without worrying about application 
portability 



 
We need to develop all these DSLs 

 
  

Current DSL methods are unsatisfactory 
 

New Problem 



Current DSL Development Approaches 

 Stand-alone DSLs 
 Can include extensive optimizations 
 Enormous effort to develop to a sufficient degree of maturity 

 Actual Compiler/Optimizations 
 Tooling (IDE, Debuggers,…) 

 Interoperation between multiple DSLs is very difficult 
 

 Purely embedded DSLs ⇒ “just a library” 
 Easy to develop (can reuse full host language) 
 Easier to learn DSL  
 Can Combine multiple DSLs in one program 
 Can Share DSL infrastructure among several DSLs 
 Hard to optimize using domain knowledge 
 Target same architecture as host language 

 
 

Need to do better 



Need to Do Better 

 Goal: Develop embedded DSLs that 
perform as well as stand-alone ones 

 Intuition: General-purpose languages 
should be designed with DSL 
embedding in mind 

 Can we make this intuition more 
tangible? 



Virtualization Analogy 

Want to have a range of differently 
configured machines 

• Not practical to run as many physical machines 

• Hardware Virtualization: run the logical machines 
on virtualizable physical hardware 

Want to have a range of different 
languages 

• Not practical to implement as many compilers 

• Language Virtualization: embed the logical 
languages into a virtualizable host language 



Language Virtualization Requirements 

Expressiveness 

•Encompasses syntax, semantics and general ease of use for domain 
experts 

Performance 

•Embedded language must me amenable to extensive static and 
dynamic analysis, optimization and code generation 

 

Safety 

•Preserve type safety of embedded language 

•No loosened guarantees about program behavior  

Modest Effort 

•Virtualization is only useful if it reduces effort to embed high 
performance DSL 



Achieving Virtualization: Expressiveness 

 OOP allowed higher level of abstractions 
 Add your own types and define operations on them 

 But how about custom type interaction with language features 

 

 Overload all relevant embedding language constructs 

 

 

    maps to 

 

 

 DSL developer can control how loops over domain 
collection should be represented and executed by 
implementing withFilter and foreach for their DSL 
type 

 

for (x <- elems if x % 2 == 0) p(x) 

elems.withFilter(x => x % 2 == 0).foreach(x => p(x)) 



Achieving Virtualization: Expressiveness 

 For full virtualization, need to apply similar 
techniques to all other relevant constructs of the 
embedding language (for example) 

 

 

    maps to 

 

 

 DSL developer can control the meaning of 
conditionals by providing overloaded variants 
specialized to DSL types 

 

if (cond) something else somethingElse 

__ifThenElse(cond, something, somethingElse) 



Outline 

 Introduction 
 Using DSLs for parallel programming 

 

 Language Virtualization 
 Enhancing the power of DSL embedding languages 

 

 Polymorphic Embedding and Modular Staging 
 Enhancing the power of embedded DSLs 

 

 Example DSLs 
 OptiML – targets machine learning applications 

 Liszt – targets scientific computing simulations 

 

 Conclusion 



Embedded DSL gets it all for free, 
but can’t change any of it 

Lightweight Modular Staging Approach 

Lexer Parser 
Type 

checker 
Analysis Optimization 

Code 
gen 

DSLs adopt front-end from 
highly expressive 

embedding language 

but can customize IR and 
participate in backend phases 

Stand-alone DSL 
implements everything 

                 Typical Compiler  

Modular Staging provides a hybrid approach 

GPCE’10: Lightweight modular staging: a pragmatic  
approach to runtime code generation and compiled DSLs 



Linear Algebra Example 

trait TestMatrix {  

 
  def example(a: Matrix, b: Matrix, c: Matrix, d: Matrix) = { 
    val x = a*b + a*c 
    val y = a*c + a*d 
    println(x+y) 
  } 
 
} 

a*b + a*c + a*c + a*d 
= 

a * ( b + c + c + d) 



Abstract Matrix Usage 

trait TestMatrix { 

 
  def example(a: Rep[Matrix], b: Rep[Matrix],  

         c: Rep[Matrix] , d: Rep[Matrix]) = { 

    val x = a*b + a*c 
    val y = a*c + a*d 
    println(x+y) 
  } 
 
} 

 Rep[Matrix]: abstract type constructor ⇒ range of possible 

implementations of Matrix 

 

 Operations on Rep[Matrix] defined in MatrixArith trait 

this: MatrixArith => 



Lifting Matrix to Abstract 
Representation 
 DSL interface building blocks structured as traits 

 Expressions of type Rep[T] represent expressions of type T 
 Can plug in different representation  

 Need to be able to convert (lift) Matrix to abstract 
representation 

 Need to define an interface for our DSL type 
 

 
 
 
 
 
 
 
 
 
 

 
 

 Now can plugin different implementations and representations 
for the DSL 
 
 
 
 
 
 
 
 

 

 

trait MatrixArith { 
 
    type Rep[T] 
 
    implicit def liftMatrixToRep(x: Matrix): Rep[Matrix]  
 
    def infix_+(x:Rep[Matrix], y: Rep[Matrix]): Rep[Matrix] 
    def infix_*(x:Rep[Matrix] , y: Rep[Matrix]): Rep[Matrix]  
 
  } 



Now Can Build an IR 

 Start with common IR structure to be shared among DSLs 
 
 
 
 
 
 
 
 
 
 
 
 

 Generic optimizations (e.g. common subexpression and 
dead code elimination) handled once and for all 
 

trait Expressions { 
     // constants/symbols (atomic) 
    abstract class Exp[T] 
    case class Const[T](x: T) extends Exp[T] 
    case class Sym[T](n: Int) extends Exp[T] 
 
    // operations (composite, defined in subtraits) 
    abstract class Op[T] 
 
    // additional members for managing encountered definitions 
    def findOrCreateDefinition[T](op: Op[T]): Sym[T] 
 
    implicit def toExp[T](d: Op[T]): Exp[T] = findOrCreateDefinition(d) 
  } 



Customize IR with Domain Info 

 Choose Exp as representation for the DSL types 
 Define Lifting function to create expressions 
 Extend generic IR with domain-specific node types 
 DSL methods build IR as program runs 

trait MatrixArithRepExp extends MatrixArith with Expressions { 
 
  type Rep[T] = Exp[T] 
 
  implicit def liftMatrixToRep(x: Matrix) = Const(x)  
 
  case class Plus(x: Exp[Matrix],y: Exp[Matrix]) extends Op[Matrix] 
  case class Times(x: Exp[Matrix],y: Exp[Matrix]) extends Op[Matrix] 
 
  def infix_+(x: Exp[Matrix],y: Exp[Matrix]) = Plus(x, y) 
  def infix_*(x: Exp[Matrix],y: Exp[Matrix]) = Times(x, y) 
} 



DSL Optimization 

 Use domain-specific knowledge to make optimizations in a modular 
fashion 

 

 

 

 

 

 

 

 

 Override IR node creation 

 Construct Optimized IR nodes if possible 

 Construct default otherwise 

 

 Rewrite rules are simple, yet powerful optimization mechanism 

 Access to the full domain specific IR allows for application of much 
more complex optimizations 

trait MatrixArithRepExpOpt extends MatrixArithRepExp { 
 
    override def infix_+(x: Exp[Matrix], y: Exp[Matrix]) = (x, y) match { 
 
      case (Times(a, b), Times(c, d)) if (a == c) => infix_*(a, infix_+(b,d)) 
 
      case _ => super.plus(x, y) 
  
  }} 



Outline 
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OptiML: A DSL for Machine Learning 

 Learning patterns from data 
 Regression 
 Classification (e.g. SVMs) 
 Clustering (e.g. K-Means) 
 Density estimation (e.g. Expectation Maximization) 
 Inference (e.g. Loopy Belief Propagation) 
 Adaptive (e.g. Reinforcement Learning) 

 
 

 



Why Machine Learning 

 A good domain for studying parallelism 
 Many applications and datasets are time-

bound in practice 
 A combination of regular and irregular 

parallelism at varying granularities 
 At the core of many emerging applications  

(speech recognition, robotic control, data 
mining etc.) 
 

 



OptiML Language Features 

 Implicitly parallel data structures 
 General linear algebra data types : Vector[T], Matrix[T] 

 Independent from the underlying implementation 

 Special data types : TrainingSet, TestSet, IndexVector, Image, 
Video .. 

 Encode semantic information 

 

 Implicitly parallel control structures 
 Sum{…}, (0::end) {…}, gradient { … },  untilconverged { … } 

 Encode restricted semantics within passed in code block  

 

 Domain specific optimizations 
 Trade off a small amount accuracy for a large amount of 

performance 

 Relaxed dependencies 

 Best effort computing 



// x : TrainingSet[Double] 
// mu0, mu1 : Vector[Double] 
 
val sigma = sum(0,x.numSamples) {  
  if (x.labels(_) == false) 
      (x(_)-mu0).trans.outer(x(_)-mu0) 
  else  
    (x(_)-mu1).trans.outer(x(_)-mu1) 
} 

OptiML Code Example 

 Gaussian Discriminant Analysis 

ML-specific data types 

 

Parallel Control 
structures 

 
Restricted index 

semantics 

 



Performance Study (CPU) 
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SVM 
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GDA 
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Performance Study (GPU) 
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Domain Specific Optimizations 
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Fuel injection 

Transition Thermal 

Turbulence 

Turbulence 

Combustion 

Liszt: A DSL for PDEs 

 Mesh-based 

 Numeric Simulation 

 Huge domains  

 millions of cells 

 Example: Unstructured 
Reynolds-averaged Navier 
Stokes (RANS) solver 

 



Liszt Language Features 

 Built-in mesh interface for arbitrary 
polyhedra 
 Vertex, Edge, Face, Cell 

 Collections of mesh elements 
 Element Sets: faces(c:Cell), edgesCCW(f:Face) 

 Mesh-based data storage 
 Fields: val vert_position = position(v) 

 Parallelizable iteration 
 forall statements: for( f <- faces(cell) ) { … } 



Liszt Code Example 

Simple Set Comprehension 

Functions, Function Calls 

Mesh Topology Operators 

Field Data Storage 

 

for(edge <- edges(mesh)) { 

   val flux = flux_calc(edge) 

   val v0 = head(edge) 

   val v1 = tail(edge) 

   Flux(v0) += flux 

   Flux(v1) -= flux 

} 

 

 

 

Code contains possible write conflicts!  

We use architecture specific strategies guided 
by domain knowledge 

 MPI: Ghost cell-based message passing 

 GPU: Coloring-based use of shared memory 

 



MPI Performance 
  

 Using 8 cores per node, scaling up to 96 
cores (12 nodes, 8 cores per node, all 
communication using MPI) 
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GPU Performance 
  

 Scaling mesh size from 50k (unit-sized) cells to 750k 
(16x) on a Tesla C2050. Comparison is against single 
threaded runtime on host CPU (Core 2 Quad 2.66Ghz) 

Single-Precision: 31.5x, Double-precision: 28x 
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Conclusions 

 DSLs can be an answer to the heterogeneous 
parallel programming problem 
 

 Need embedding languages to be more 
virtualizable 
 

 First steps in virtualizing Scala 
 

 Lightweight modular staging allows for more 
powerful embedded DSLs 
 

 Early embedded DSL results are promising  
 

 No unicorns were harmed during production 


