

Language Virtualization for

Heterogeneous Parallel
Computing

Hassan Chafi, Arvind Sujeeth, Zach DeVito, Pat Hanrahan,
 Kunle Olukotun

Stanford University

Adriaan Moors, Tiark Rompf, Martin Odersky
EPFL

Era of Power Limited Computing

 Mobile

 Battery operated

 Passively cooled

 Data center

 Energy costs

 Infrastructure costs

Computing System Power

second

Ops
EnergyPower Op

Heterogeneous Hardware

 Heterogeneous HW for energy efficiency
 Multi-core, ILP, threads, data-parallel engines, custom engines

 H.264 encode study

1

10

100

1000

4 cores + ILP + SIMD + custom

inst

ASIC

Performance

Energy Savings

Source: Understanding Sources of Inefficiency in General-Purpose Chips (ISCA’10)

Future performance gains will mainly come from heterogeneous

hardware with different specialized resources

DE Shaw Research: Anton

D. E. Shaw et al. SC 2009, Best Paper and Gordon Bell Prize

100 times more power efficient

Molecular dynamics computer

Apple A4 in the i{Pad|Phone}

Contains CPU and GPU and …

Heterogeneous Parallel Computing
 Uniprocessor

 Sequential programming

 C

 CMP (Multicore)

 Threads and locks

 C + (Pthreads, OpenMP)

 GPU

 Data parallel programming

 C + (Pthreads, OpenMP) + (CUDA, OpenCL)

 Cluster

 Message passing

 C + (Pthreads, OpenMP) + (CUDA, OpenCL) + MPI

Intel

Pentium 4

Too many different programming models

Sun

T2

Cray

Jaguar

Nvidia

Fermi

It’s all About Energy
(Ultimately: Money)

 Human effort just like electrical power
 Aim: reduce development effort, increase

performance
 Increase performance now means:

 reduce energy per op
 increase # of targets

 Need to reduce effort per target!

A Solution For Pervasive Parallelism

 Domain Specific Languages (DSLs)
 Programming language with restricted expressiveness for a particular

domain

Performance

Productivity Completeness

The Holy Grail of Performance
Oriented Languages

The Holy Grail of Performance
Oriented Languages

Performance

Productivity Completeness

Target
DSLs

Benefits of Using DSLs for Parallelism

Productivity

•Shield average programmers from the difficulty of parallel
programming

•Focus on developing algorithms and applications and not on low
level implementation details

Performance

•Match generic parallel execution patterns to high level domain
abstraction

•Restrict expressiveness to more easily and fully extract available
parallelism

•Use domain knowledge for static/dynamic optimizations

Portability and forward scalability

•DSL & Runtime can be evolved to take advantage of latest
hardware features

•Applications remain unchanged

•Allows HW vendors to innovate without worrying about application
portability

We need to develop all these DSLs

Current DSL methods are unsatisfactory

New Problem

Current DSL Development Approaches

 Stand-alone DSLs
 Can include extensive optimizations
 Enormous effort to develop to a sufficient degree of maturity

 Actual Compiler/Optimizations
 Tooling (IDE, Debuggers,…)

 Interoperation between multiple DSLs is very difficult

 Purely embedded DSLs ⇒ “just a library”
 Easy to develop (can reuse full host language)
 Easier to learn DSL
 Can Combine multiple DSLs in one program
 Can Share DSL infrastructure among several DSLs
 Hard to optimize using domain knowledge
 Target same architecture as host language

Need to do better

Need to Do Better

 Goal: Develop embedded DSLs that
perform as well as stand-alone ones

 Intuition: General-purpose languages
should be designed with DSL
embedding in mind

 Can we make this intuition more
tangible?

Virtualization Analogy

Want to have a range of differently
configured machines

• Not practical to run as many physical machines

• Hardware Virtualization: run the logical machines
on virtualizable physical hardware

Want to have a range of different
languages

• Not practical to implement as many compilers

• Language Virtualization: embed the logical
languages into a virtualizable host language

Language Virtualization Requirements

Expressiveness

•Encompasses syntax, semantics and general ease of use for domain
experts

Performance

•Embedded language must me amenable to extensive static and
dynamic analysis, optimization and code generation

Safety

•Preserve type safety of embedded language

•No loosened guarantees about program behavior

Modest Effort

•Virtualization is only useful if it reduces effort to embed high
performance DSL

Achieving Virtualization: Expressiveness

 OOP allowed higher level of abstractions
 Add your own types and define operations on them

 But how about custom type interaction with language features

 Overload all relevant embedding language constructs

 maps to

 DSL developer can control how loops over domain
collection should be represented and executed by
implementing withFilter and foreach for their DSL
type

for (x <- elems if x % 2 == 0) p(x)

elems.withFilter(x => x % 2 == 0).foreach(x => p(x))

Achieving Virtualization: Expressiveness

 For full virtualization, need to apply similar
techniques to all other relevant constructs of the
embedding language (for example)

 maps to

 DSL developer can control the meaning of
conditionals by providing overloaded variants
specialized to DSL types

if (cond) something else somethingElse

__ifThenElse(cond, something, somethingElse)

Outline

 Introduction
 Using DSLs for parallel programming

 Language Virtualization
 Enhancing the power of DSL embedding languages

 Polymorphic Embedding and Modular Staging
 Enhancing the power of embedded DSLs

 Example DSLs
 OptiML – targets machine learning applications

 Liszt – targets scientific computing simulations

 Conclusion

Embedded DSL gets it all for free,
but can’t change any of it

Lightweight Modular Staging Approach

Lexer Parser
Type

checker
Analysis Optimization

Code
gen

DSLs adopt front-end from
highly expressive

embedding language

but can customize IR and
participate in backend phases

Stand-alone DSL
implements everything

 Typical Compiler

Modular Staging provides a hybrid approach

GPCE’10: Lightweight modular staging: a pragmatic
approach to runtime code generation and compiled DSLs

Linear Algebra Example

trait TestMatrix {

 def example(a: Matrix, b: Matrix, c: Matrix, d: Matrix) = {
 val x = a*b + a*c
 val y = a*c + a*d
 println(x+y)
 }

}

a*b + a*c + a*c + a*d
=

a * (b + c + c + d)

Abstract Matrix Usage

trait TestMatrix {

 def example(a: Rep[Matrix], b: Rep[Matrix],

 c: Rep[Matrix] , d: Rep[Matrix]) = {

 val x = a*b + a*c
 val y = a*c + a*d
 println(x+y)
 }

}

 Rep[Matrix]: abstract type constructor ⇒ range of possible

implementations of Matrix

 Operations on Rep[Matrix] defined in MatrixArith trait

this: MatrixArith =>

Lifting Matrix to Abstract
Representation
 DSL interface building blocks structured as traits

 Expressions of type Rep[T] represent expressions of type T
 Can plug in different representation

 Need to be able to convert (lift) Matrix to abstract
representation

 Need to define an interface for our DSL type

 Now can plugin different implementations and representations
for the DSL

trait MatrixArith {

 type Rep[T]

 implicit def liftMatrixToRep(x: Matrix): Rep[Matrix]

 def infix_+(x:Rep[Matrix], y: Rep[Matrix]): Rep[Matrix]
 def infix_*(x:Rep[Matrix] , y: Rep[Matrix]): Rep[Matrix]

 }

Now Can Build an IR

 Start with common IR structure to be shared among DSLs

 Generic optimizations (e.g. common subexpression and
dead code elimination) handled once and for all

trait Expressions {
 // constants/symbols (atomic)
 abstract class Exp[T]
 case class Const[T](x: T) extends Exp[T]
 case class Sym[T](n: Int) extends Exp[T]

 // operations (composite, defined in subtraits)
 abstract class Op[T]

 // additional members for managing encountered definitions
 def findOrCreateDefinition[T](op: Op[T]): Sym[T]

 implicit def toExp[T](d: Op[T]): Exp[T] = findOrCreateDefinition(d)
 }

Customize IR with Domain Info

 Choose Exp as representation for the DSL types
 Define Lifting function to create expressions
 Extend generic IR with domain-specific node types
 DSL methods build IR as program runs

trait MatrixArithRepExp extends MatrixArith with Expressions {

 type Rep[T] = Exp[T]

 implicit def liftMatrixToRep(x: Matrix) = Const(x)

 case class Plus(x: Exp[Matrix],y: Exp[Matrix]) extends Op[Matrix]
 case class Times(x: Exp[Matrix],y: Exp[Matrix]) extends Op[Matrix]

 def infix_+(x: Exp[Matrix],y: Exp[Matrix]) = Plus(x, y)
 def infix_*(x: Exp[Matrix],y: Exp[Matrix]) = Times(x, y)
}

DSL Optimization

 Use domain-specific knowledge to make optimizations in a modular
fashion

 Override IR node creation

 Construct Optimized IR nodes if possible

 Construct default otherwise

 Rewrite rules are simple, yet powerful optimization mechanism

 Access to the full domain specific IR allows for application of much
more complex optimizations

trait MatrixArithRepExpOpt extends MatrixArithRepExp {

 override def infix_+(x: Exp[Matrix], y: Exp[Matrix]) = (x, y) match {

 case (Times(a, b), Times(c, d)) if (a == c) => infix_*(a, infix_+(b,d))

 case _ => super.plus(x, y)

 }}

Outline

 Introduction
 Using DSLs for parallel programming

 Language Virtualization
 Enhancing the power of DSL embedding languages

 Polymorphic Embedding and Modular Staging
 Enhancing the power of embedded DSLs

 Example DSLs
 OptiML – targets machine learning applications

 Liszt – targets scientific computing simulations

 Conclusion

OptiML: A DSL for Machine Learning

 Learning patterns from data
 Regression
 Classification (e.g. SVMs)
 Clustering (e.g. K-Means)
 Density estimation (e.g. Expectation Maximization)
 Inference (e.g. Loopy Belief Propagation)
 Adaptive (e.g. Reinforcement Learning)

Why Machine Learning

 A good domain for studying parallelism
 Many applications and datasets are time-

bound in practice
 A combination of regular and irregular

parallelism at varying granularities
 At the core of many emerging applications

(speech recognition, robotic control, data
mining etc.)

OptiML Language Features

 Implicitly parallel data structures
 General linear algebra data types : Vector[T], Matrix[T]

 Independent from the underlying implementation

 Special data types : TrainingSet, TestSet, IndexVector, Image,
Video ..

 Encode semantic information

 Implicitly parallel control structures
 Sum{…}, (0::end) {…}, gradient { … }, untilconverged { … }

 Encode restricted semantics within passed in code block

 Domain specific optimizations
 Trade off a small amount accuracy for a large amount of

performance

 Relaxed dependencies

 Best effort computing

// x : TrainingSet[Double]
// mu0, mu1 : Vector[Double]

val sigma = sum(0,x.numSamples) {
 if (x.labels(_) == false)
 (x(_)-mu0).trans.outer(x(_)-mu0)
 else
 (x(_)-mu1).trans.outer(x(_)-mu1)
}

OptiML Code Example

 Gaussian Discriminant Analysis

ML-specific data types

Parallel Control
structures

Restricted index

semantics

Performance Study (CPU)

1
.0

1
.8

3
.6

6
.3

1
.1

1
.2

1
.2

1
.2

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1 CPU 2 CPU 4 CPU 8 CPU

K-means

1
.0

3
.1

4
.4

5
.5

0
.7

1
.6

2
.1

2
.3

0.00

0.50

1.00

1.50

1 CPU 2 CPU 4 CPU 8 CPUN
o

rm
al

iz
e

d
 E

xe
cu

ti
o

n
 T

im
e

SVM

1
.0

1
.9

3
.4

5
.2

0
.1

0
.1

0
.1

0
.1

0.00

2.00

4.00

6.00

8.00

1 CPU 2 CPU 4 CPU 8 CPU

LBP

1
.0

1
.9

3
.1

3
.0

1
.0

1
.9

3
.4

4
.7

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1 CPU 2 CPU 4 CPU 8 CPU

RBM

1
.0

1
.7

1
.8

1
.9

0
.5

1
.0

1
.4

1
.6

0.00

0.50

1.00

1.50

2.00

1 CPU 2 CPU 4 CPU 8 CPUN
o

rm
al

iz
e

d
 E

xe
cu

ti
o

n
 T

im
e

GDA

1
.0

2
.0

3
.4

4
.6

0
.6

0
.8

1
.0

1
.1

 0.00

 0.50

 1.00

 1.50

 2.00

1 CPU 2 CPU 4 CPU 8 CPU

Naive Bayes

OptiML on DELITE Explicitly Parallelized MATLAB

Performance Study (GPU)

0.50

1.00

2.00

4.00

8.00

16.00

32.00

GDA RBM SVM KM NB LBP

N
o

r
m

a
li

z
e
d

 S
p

e
e
d

u
p

Domain Specific Optimizations

0

0.2

0.4

0.6

0.8

1

1.2

N
o

rm
al

iz
e

d
 E

xe
cu

ti
o

n
 T

im
e

K-means Best-effort (1.2% error)

Best-effort (4.2% error) Best-effort (7.4% error)

SVM Relaxed SVM (+ 1% error)

1.0x

1.8x

4.9x

12.7x

1.0x

1.8x

 Best Effort Computation Relaxed Dependencies

Outline

 Introduction
 Using DSLs for parallel programming

 Language Virtualization
 Enhancing the power of DSL embedding languages

 Polymorphic Embedding and Modular Staging
 Enhancing the power of embedded DSLs

 Example DSLs
 OptiML – targets machine learning applications

 Liszt – targets scientific computing simulations

 Conclusion

Fuel injection

Transition Thermal

Turbulence

Turbulence

Combustion

Liszt: A DSL for PDEs

 Mesh-based

 Numeric Simulation

 Huge domains

 millions of cells

 Example: Unstructured
Reynolds-averaged Navier
Stokes (RANS) solver

Liszt Language Features

 Built-in mesh interface for arbitrary
polyhedra
 Vertex, Edge, Face, Cell

 Collections of mesh elements
 Element Sets: faces(c:Cell), edgesCCW(f:Face)

 Mesh-based data storage
 Fields: val vert_position = position(v)

 Parallelizable iteration
 forall statements: for(f <- faces(cell)) { … }

Liszt Code Example

Simple Set Comprehension

Functions, Function Calls

Mesh Topology Operators

Field Data Storage

for(edge <- edges(mesh)) {

 val flux = flux_calc(edge)

 val v0 = head(edge)

 val v1 = tail(edge)

 Flux(v0) += flux

 Flux(v1) -= flux

}

Code contains possible write conflicts!

We use architecture specific strategies guided
by domain knowledge

 MPI: Ghost cell-based message passing

 GPU: Coloring-based use of shared memory

MPI Performance

 Using 8 cores per node, scaling up to 96
cores (12 nodes, 8 cores per node, all
communication using MPI)

0

20

40

60

80

100

120

0 20 40 60 80 100 120

Sp
e

e
d

u
p

 o
ve

r
Sc

al
ar

Number of MPI Nodes

MPI Speedup 750k Mesh

Linear Scaling Liszt Scaling Joe Scaling

1

10

100

1000

0 20 40 60 80 100 120

R
u

n
ti

m
 L

o
g

Sc
al

e
 (

se
co

n
d

s)

Number of MPI Nodes

MPI Wall-Clock Runtime

Liszt Runtime Joe Runtime

GPU Performance

 Scaling mesh size from 50k (unit-sized) cells to 750k
(16x) on a Tesla C2050. Comparison is against single
threaded runtime on host CPU (Core 2 Quad 2.66Ghz)

Single-Precision: 31.5x, Double-precision: 28x

0

5

10

15

20

25

30

35

0 5 10 15 20

Sp
e

e
d

u
p

 o
ve

r
Sc

al
ar

Problem Size

GPU Speedup over Single-Core

Speedup Double

Speedup Float

Conclusions

 DSLs can be an answer to the heterogeneous
parallel programming problem

 Need embedding languages to be more
virtualizable

 First steps in virtualizing Scala

 Lightweight modular staging allows for more
powerful embedded DSLs

 Early embedded DSL results are promising

 No unicorns were harmed during production

