

A Heterogeneous Parallel
Framework for Domain -

Specific Languages

Kevin J. Brown, Arvind K. Sujeeth, HyoukJoong Lee,
Hassan Chafi, Kunle Olukotun

Stanford University

Tiark Rompf , Martin Odersky
EPFL

Programmability Chasm

Cray

Jaguar

Sun

T2

Nvidia

Fermi

Altera

FPGA

MPI
PGAS

Pthreads
OpenMP

CUDA
OpenCL

Verilog
VHDL

Virtual

Worlds

Personal

Robotics

Data

Informatics

Scientific

Engineering

Applications

Parallel

Programming Language

Performance

Productivity Generality

The Ideal Parallel
Programming Language

Successful Languages

Performance

Productivity Generality

Domain Specific
Languages

Domain
Specific

Languages

Performance
(Heterogeneous Parallelism)

Productivity Generality

Benefits of Using DSLs for
Parallelism

Productivity

ÅShield most programmers from the difficulty of parallel
programming

ÅFocus on developing algorithms and applications and not on low
level implementation details

Performance

ÅMatch high level domain abstraction to generic parallel execution
patterns

ÅRestrict expressiveness to more easily and fully extract available
parallelism

ÅUse domain knowledge for static/dynamic optimizations

Portability and forward scalability

ÅDSL & Runtime can be evolved to take advantage of latest
hardware features

ÅApplications remain unchanged

ÅAllows innovative HW without worrying about application portability

DSLs: Compiler vs. Library

Â A Domain -Specific Approach to Heterogeneous
Parallelism , Chafi et al.
Â A framework for parallel DSL libraries

Â Used data -parallel patterns and deferred execution
(transparent futures) to execute tasks in parallel

Â Why write a compiler?
Â Static optimizations (both generic and domain -specific)

Â All DSL abstractions can be removed from the generated
code

Â Generate code for hardware not supported by the host
language

Â Full -program analysis

Common DSL Framework

Â Building a new DSL
Â Design the language (syntax, operations, abstractions, etc.)
Â Implement compiler (parsing, type checking, optimizations, etc.)
Â Discover parallelism (understand parallel patterns)
Â Emit parallel code for different hardware (optimize for low - level

architectural details)
Â Handle synchronization, multiple address spaces, etc.

Â Need a DSL infrastructure

Â Embed DSLs in a common host language
Â Provide building blocks for common DSL compiler & runtime

functionality

Delite Overview

Domain Embedding Language (Scala)

Delite Runtime

Staged Execution

Heterogeneous

Hardware

Delite: DSL

Infrastructure

Walk-time Optimizations

Delite Compiler

Static Optimizations Heterogeneous Code Generation

Locality-aware Scheduling

Physics

(Liszt)

Machine
Learning
(OptiML)

Domain

Specific

Languages

SMP GPU

Parallel Patterns

Data
Analytics
(OptiQL)

DSL Intermediate
Representation (IR)

Matrix

Plus

Vector

Exp

Matrix

Sum

s = sum(M) V1 = exp(V2) M1 = M2 + M3

Domain

Analysis & Opt.

Domain User

Interface
DSL

User

Application

Domain Ops
DSL

Author Collection

Quicksort

C2 = sort(C1)

Building an IR

Â OptiML : A DSL for machine learning

Â Built using Delite

Â Supports linear algebra (Matrix/Vector) operations

Â DSL methods build IR as program runs

//a, b, c, d : Matrix
val x = a * b + c * d

def infix_+(a: Matrix, b: Matrix) =
 new MatrixPlus (a,b)

def infix_*(a: Matrix, b: Matrix) =
 new MatrixTimes (a,b)

Matrix

Plus

Matrix

Times

Matrix

Times

A B C D

�œ

