

A Heterogeneous Parallel
Framework for Domain-

Specific Languages

Kevin J. Brown, Arvind K. Sujeeth, HyoukJoong Lee,
Hassan Chafi, Kunle Olukotun

Stanford University

Tiark Rompf, Martin Odersky
EPFL

Programmability Chasm

Cray

Jaguar

Sun

T2

Nvidia

Fermi

Altera

FPGA

MPI
PGAS

Pthreads
OpenMP

CUDA
OpenCL

Verilog
VHDL

Virtual

Worlds

Personal

Robotics

Data

Informatics

Scientific

Engineering

Applications

Parallel

Programming Language

Performance

Productivity Generality

The Ideal Parallel
Programming Language

Successful Languages

Performance

Productivity Generality

Domain Specific
Languages

Domain
Specific

Languages

Performance
(Heterogeneous Parallelism)

Productivity Generality

Benefits of Using DSLs for
Parallelism

Productivity

•Shield most programmers from the difficulty of parallel
programming

•Focus on developing algorithms and applications and not on low
level implementation details

Performance

•Match high level domain abstraction to generic parallel execution
patterns

•Restrict expressiveness to more easily and fully extract available
parallelism

•Use domain knowledge for static/dynamic optimizations

Portability and forward scalability

•DSL & Runtime can be evolved to take advantage of latest
hardware features

•Applications remain unchanged

•Allows innovative HW without worrying about application portability

DSLs: Compiler vs. Library

 A Domain-Specific Approach to Heterogeneous
Parallelism, Chafi et al.
 A framework for parallel DSL libraries

 Used data-parallel patterns and deferred execution
(transparent futures) to execute tasks in parallel

 Why write a compiler?
 Static optimizations (both generic and domain-specific)

 All DSL abstractions can be removed from the generated
code

 Generate code for hardware not supported by the host
language

 Full-program analysis

Common DSL Framework

 Building a new DSL
 Design the language (syntax, operations, abstractions, etc.)
 Implement compiler (parsing, type checking, optimizations, etc.)
 Discover parallelism (understand parallel patterns)
 Emit parallel code for different hardware (optimize for low-level

architectural details)
 Handle synchronization, multiple address spaces, etc.

 Need a DSL infrastructure

 Embed DSLs in a common host language
 Provide building blocks for common DSL compiler & runtime

functionality

Delite Overview

Domain Embedding Language (Scala)

Delite Runtime

Staged Execution

Heterogeneous

Hardware

Delite: DSL

Infrastructure

Walk-time Optimizations

Delite Compiler

Static Optimizations Heterogeneous Code Generation

Locality-aware Scheduling

Physics

(Liszt)

Machine
Learning
(OptiML)

Domain

Specific

Languages

SMP GPU

Parallel Patterns

Data
Analytics
(OptiQL)

DSL Intermediate
Representation (IR)

Matrix

Plus

Vector

Exp

Matrix

Sum

s = sum(M) V1 = exp(V2) M1 = M2 + M3

Domain

Analysis & Opt.

Domain User

Interface
DSL

User

Application

Domain Ops
DSL

Author Collection

Quicksort

C2 = sort(C1)

Building an IR

 OptiML: A DSL for machine learning

 Built using Delite

 Supports linear algebra (Matrix/Vector) operations

 DSL methods build IR as program runs

//a, b, c, d : Matrix
val x = a * b + c * d

def infix_+(a: Matrix, b: Matrix) =
 new MatrixPlus(a,b)

def infix_*(a: Matrix, b: Matrix) =
 new MatrixTimes(a,b)

Matrix

Plus

Matrix

Times

Matrix

Times

A B C D

⇒

DSL Optimizations

 DSL developer defines how DSL operations create IR nodes

 Specialize implementation of operation for each occurrence
by pattern matching on the IR

 This technique can be used to control merely what to add
to IR or to perform IR rewrites

 Use this to apply linear algebra simplification rules

A B A C

* *

+

A

C

+

B

*

⇒

AB + AC A(B+C)

OptiML Linear Algebra Rewrites

 A straightforward translation of the Gaussian Discriminant
Analysis (GDA) algorithm from the mathematical
description produces the following code:

 A much more efficient implementation recognizes that

 Transformed code was 20.4x faster with 1 thread and
48.3x faster with 8 threads.

 𝑥𝑖

𝑛

𝑖=0

∗ 𝑦𝑖 → 𝑋 : , 𝑖 ∗ 𝑌 𝑖, : = 𝑋 ∗ 𝑌

𝑛

𝑖=0

val sigma = sum(0,m) { i =>
 val a = if (!x.labels(i)) x(i) - mu0
 else x(i) - mu1
 a.t ** a
}

Delite DSL Framework

 Building a new DSL
 Design the language (syntax, operations,

abstractions, etc.)
 Implement compiler

 Domain-specific analysis and optimization
 Lexing, parsing, type-checking, generic optimizations

 Discover parallelism (understand parallel patterns)
 Emit parallel code for different hardware (optimize

for low-level architectural details)
 Handle synchronization, multiple address spaces, etc.

Delite Ops

 Encode known parallel execution patterns

 Map, filter, reduce, …

 Bulk-synchronous foreach

 Divide & conquer

 Delite provides implementations of these
patterns for multiple hardware targets

 e.g., multi-core, GPU

 DSL author maps each domain operation to the
appropriate pattern
 Delite handles parallel optimization, code generation, and

execution for all DSLs

Multiview Delite IR

Matrix

Plus

Vector

Exp

Matrix

Sum

Reduce Map ZipWith

s = sum(M) V1 = exp(V2) M1 = M2 + M3

Domain

Analysis & Opt.

Domain User

Interface

Parallelism

Analysis & Opt.

Code Generation

DSL

User

Application

Domain Ops

Delite Ops

DSL

Author

Delite

Collection

Quicksort

Divide &

Conquer

C2 = sort(C1)

Delite Op Fusion

 Operates on all loop-based ops

 Reduces op overhead and improves locality

 Elimination of temporary data structures

 Merging loop bodies may enable further optimizations

 Fuse both dependent and side-by-side operations

 Fused ops can have multiple inputs & outputs

 Algorithm: fuse two loops if

 size(loop1) == size(loop2)

 No mutual dependencies (which aren’t removed by fusing)

Downsampling in OptiML

0
.9

1
.8

3
.3

5
.6

1
.0

1
.9

3
.4

5
.8

0
.3

0
.6

0
.9

1
.0

0

0.5

1

1.5

2

2.5

3

3.5

1 2 4 8

N
o

r
m

a
li
z
e
d

 E
x
e
c
u

ti
o

n
 T

im
e

Processors

C++ OptiML Fusing OptiML No Fusing

Multiview Delite IR

Matrix

Plus

Vector

Exp

Matrix

Sum

Reduce Map ZipWith

Op

s = sum(M) V1 = exp(V2) M1 = M2 + M3

Domain

Analysis & Opt.

Domain User

Interface

Parallelism

Analysis & Opt.

Code Generation

DSL

User

Generic Analysis

& Opt.

Application

Domain Ops

Delite Ops

Generic Op

DSL

Author

Delite

Delite

Collection

Quicksort

Divide &

Conquer

C2 = sort(C1)

 Optimizations
 Common subexpression elimination (CSE)

 Dead code elimination (DCE)

 Constant folding

 Code motion (e.g., loop hoisting)

 Side effects and alias tracking

 All performed at the granularity of DSL
operations
 e.g., MatrixMultiply

Generic IR

Intermediate Representation (IR)

Delite DSL Compiler Infrastructure

 Scala Embedding

 Framework

Delite

Execution

Graph

Delite Parallelism

Framework

Base IR

Generic

Analysis & Opt.

Code Generation

Kernels

(Scala, C,

Cuda)

Liszt

program

OptiML

program

DS IR

Domain

Analysis & Opt.

Delite IR

Parallelism Analysis,

Opt. & Mapping

⇒ ⇒

DSL Data

Structures

Heterogeneous Code Generation

 Delite can have multiple registered target code
generators (Scala, Cuda, …)
 Calls all generators for each Op to create kernels

 Only 1 generator has to succeed

 Generates an execution graph that enumerates
all Delite Ops in the program
 Encodes parallelism within the application

 Contains all the information the Delite Runtime requires to
execute the program

 Op dependencies, supported targets, etc.

Delite Runtime

Delite

Execution

Graph

Kernels

(Scala, C,

Cuda)

DSL Data

Structures

Local System

GPU

Partial schedules, Fused, specialized kernels

SMP

Machine Inputs Application Inputs

Scheduler

Code Generator

JIT Kernel Fusion, Specialization, Synchronization

Walk-Time

Schedule Dispatch, Memory Management, Lazy Data Transfers

Execution-Time

Schedule & Kernel Compilation

 Compile execution graph to executables for each
resource after scheduling
 Defer all synchronization to this point and optimize

 Kernels specialized based on number of
processors allocated for it

 e.g., specialize height of tree reduction

 Greatly reduces overhead compared to dynamic
deferred execution model

 Can have finer-grained Ops with less overhead

Benefits of Runtime Codegen

 GDA with 64 element input

0

0.5

1

1.5

2

2.5

1 2 4 8

N
o

r
m

a
li
z
e
d

 E
x
e
c
u

ti
o

n
 T

im
e

Processors

Compiled Interpreted

1
.0

0

1
.6

2

2
.3

0

3
.2

1

0
.9

9

0
.5

3

0
.6

2
 0

.4
9

GPU Management

 Cuda host thread launches kernels and automatically
performs data transfers as required by schedule

 Compiler provides helper functions to

 Copy data structures between address spaces

 pre-allocate outputs and temporaries

 select the number of threads & thread blocks

 Provides device memory management for kernels

 Perform liveness analysis to determine when op inputs and
outputs are dead on the GPU

 Runtime frees dead data when it experiences memory
pressure

Cuda Code Generation

 With a library approach we can only launch pre-written kernels

 Code generation enables kernels containing user-defined
functions and optimization opportunities

 e.g., fuse operations into one kernel and keep intermediate results in
registers

1.0

2.3

5.5

0

0.2

0.4

0.6

0.8

1

1.2

RBM NB GDA

N
o
r
m

a
li

z
e
d

 E
x
e
c
u

ti
o
n

 T
im

e

Library-Based Delite

Performance Results

 Machine
 Two quad-core Nehalem 2.67 GHz processors
 NVidia Tesla C2050 GPU

 Application Versions
 OptiML + Delite
 MATLAB

 version 1: multi-core (parallelization using
“parfor” construct and BLAS)

 version 2: GPU

 C++
 used Armadillo linear algebra library for a

sequential baseline
 Algorithmically identical to OptiML version

OptiML vs. MATLAB vs. Armadillo (C++)

OptiML Parallelized MATLAB C++

1
.0

1
.6

1
.8

1
.9

4
1

.3

0
.5

0
.9

1
.4

1
.6

2
.6

0
.6

0.00

0.50

1.00

1.50

2.00

2.50

1 CPU2 CPU4 CPU8 CPU CPU

+

GPU

N
o

r
m

a
li
z
e
d

 E
x
e
c
u

ti
o
n

T
im

e

GDA

1
.0

1
.9

3
.6

5
.8

1
.1

0
.1

0
.2

0
.2

0
.3

1
.2

 0.00

 2.00

 4.00

 6.00

 8.00

 10.00

1 CPU 2 CPU 4 CPU 8 CPU CPU +

GPU

0
.0

1

100.00

110.00

Naive Bayes

..

1
.0

1
.7

2
.7

3
.5

1
1

.0

1
.0

1
.9

3
.2

4
.7

8
.9

0
.6

0.00

0.50

1.00

1.50

2.00

1 CPU 2 CPU 4 CPU 8 CPU CPU +

GPU

RBM

1
.0

2
.1

4
.1

7
.1

2
.3

0
.3

0
.4

0
.4

0
.4

 0
.3

1
.2

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

1 CPU 2 CPU 4 CPU 8 CPU CPU +

GPU

K-means

1
.0

1
.9

3
.1

4
.2

1
.1

0
.9

1
.2

1
.4

1
.4

 0
.8

 0.00

 0.50

 1.00

 1.50

 2.00

1 CPU 2 CPU 4 CPU 8 CPU CPU +

GPU

0
.1

7.00

15.00

SVM

..

1
.0

1
.4

2
.0

2
.3

1
.7

0
.5

0
.9

1
.3

1
.1

0
.4

0
.5

0.00

0.50

1.00

1.50

2.00

2.50

3.00

1 CPU 2 CPU 4 CPU 8 CPU CPU +

GPU

Linear Regression

Conclusions

 DSLs can provide both productivity and performance
on heterogeneous hardware

 Need to simplify the process of developing DSLs for
parallelism

 Delite provides a framework for creating heterogeneous
parallel DSLs

 Performs generic, parallel, and domain-specific
optimizations in a single system

 Visit us at ppl.stanford.edu

 Link to GitHub project

 Related publications & projects

