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Benefits of Using DSLs for 
Parallelism 

Productivity 

•Shield most programmers from the difficulty of parallel 
programming 

•Focus on developing algorithms and applications and not on low 
level implementation details 

Performance 

•Match high level domain abstraction to generic parallel execution 
patterns 

•Restrict expressiveness to more easily and fully extract available 
parallelism 

•Use domain knowledge for static/dynamic optimizations 

Portability and forward scalability 

•DSL & Runtime can be evolved to take advantage of latest 
hardware features 

•Applications remain unchanged 

•Allows innovative HW without worrying about application portability 



DSLs: Compiler vs. Library 

 A Domain-Specific Approach to Heterogeneous 
Parallelism, Chafi et al. 
 A framework for parallel DSL libraries 

 Used data-parallel patterns and deferred execution 
(transparent futures) to execute tasks in parallel  

 

 Why write a compiler? 
 Static optimizations (both generic and domain-specific) 

 All DSL abstractions can be removed from the generated 
code 

 Generate code for hardware not supported by the host 
language 

 Full-program analysis 



Common DSL Framework 

 Building a new DSL 
 Design the language (syntax, operations, abstractions, etc.) 
 Implement compiler (parsing, type checking, optimizations, etc.) 
 Discover parallelism (understand parallel patterns) 
 Emit parallel code for different hardware (optimize for low-level 

architectural details) 
 Handle synchronization, multiple address spaces, etc. 

 
 Need a DSL infrastructure 

 Embed DSLs in a common host language 
 Provide building blocks for common DSL compiler & runtime 

functionality 

 
 



Delite Overview 
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Building an IR 

 OptiML: A DSL for machine learning 

 Built using Delite 

 Supports linear algebra (Matrix/Vector) operations 

 

 

 

 

 

 

 

 

 DSL methods build IR as program runs 

//a, b, c, d : Matrix 
val x = a * b + c * d 

def infix_+(a: Matrix, b: Matrix) =  
  new MatrixPlus(a,b) 
 
def infix_*(a: Matrix, b: Matrix) =  
  new MatrixTimes(a,b) 

Matrix 

Plus 

Matrix 

Times 

Matrix 

Times 

A B C D 
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DSL Optimizations 

 DSL developer defines how DSL operations create IR nodes 

 

 Specialize implementation of operation for each occurrence 
by pattern matching on the IR 

 

 This technique can be used to control merely what to add 
to IR or to perform IR rewrites 

 Use this to apply linear algebra simplification rules 
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OptiML Linear Algebra Rewrites 

 A straightforward translation of the Gaussian Discriminant 
Analysis (GDA) algorithm from the mathematical 
description produces the following code: 

 

 

 
 A much more efficient implementation recognizes that 

 

 

 

 Transformed code was 20.4x faster with 1 thread and 
48.3x faster with 8 threads.    

 𝑥𝑖

𝑛

𝑖=0

∗ 𝑦𝑖 → 𝑋 : , 𝑖 ∗ 𝑌 𝑖, : = 𝑋 ∗ 𝑌

𝑛

𝑖=0

 

val sigma = sum(0,m) { i => 
  val a = if (!x.labels(i)) x(i) - mu0  
          else x(i) - mu1 
  a.t ** a 
} 



Delite DSL Framework 

 Building a new DSL 
 Design the language (syntax, operations, 

abstractions, etc.) 
 Implement compiler  

 Domain-specific analysis and optimization 
 Lexing, parsing, type-checking, generic optimizations 

 Discover parallelism (understand parallel patterns) 
 Emit parallel code for different hardware (optimize 

for low-level architectural details) 
 Handle synchronization, multiple address spaces, etc. 

 



Delite Ops 

 Encode known parallel execution patterns 

 Map, filter, reduce, … 

 Bulk-synchronous foreach 

 Divide & conquer 

 

 Delite provides implementations of these 
patterns for multiple hardware targets 

 e.g., multi-core, GPU 

 

 DSL author maps each domain operation to the 
appropriate pattern 
 Delite handles parallel optimization, code generation, and 

execution for all DSLs 



Multiview Delite IR 
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Delite Op Fusion 

 Operates on all loop-based ops 

 

 Reduces op overhead and improves locality 

 Elimination of temporary data structures 

 Merging loop bodies may enable further optimizations 

 

 Fuse both dependent and side-by-side operations 

 Fused ops can have multiple inputs & outputs 

 

 Algorithm: fuse two loops if 

 size(loop1) == size(loop2) 

 No mutual dependencies (which aren’t removed by fusing) 

 



Downsampling in OptiML 
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Multiview Delite IR 
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 Optimizations 
 Common subexpression elimination (CSE) 

 Dead code elimination (DCE) 

 Constant folding 

 Code motion (e.g., loop hoisting) 

 

 Side effects and alias tracking 

 

 All performed at the granularity of DSL 
operations 
 e.g., MatrixMultiply 

 

Generic IR  



Intermediate Representation (IR) 
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Heterogeneous Code Generation 

 Delite can have multiple registered target code 
generators (Scala, Cuda, …)  
 Calls all generators for each Op to create kernels 

 Only 1 generator has to succeed  

 

 Generates an execution graph that enumerates 
all Delite Ops in the program 
 Encodes parallelism within the application 

 Contains all the information the Delite Runtime requires to 
execute the program 

 Op dependencies, supported targets, etc. 



Delite Runtime 
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Schedule & Kernel Compilation 

 Compile execution graph to executables for each 
resource after scheduling 
 Defer all synchronization to this point and optimize 

 

 Kernels specialized based on number of 
processors allocated for it 

 e.g., specialize height of tree reduction 

 

 Greatly reduces overhead compared to dynamic 
deferred execution model 

 Can have finer-grained Ops with less overhead 



Benefits of Runtime Codegen 

 GDA with 64 element input 
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GPU Management 

 Cuda host thread launches kernels and automatically 
performs data transfers as required by schedule 

 Compiler provides helper functions to 

 Copy data structures between address spaces 

 pre-allocate outputs and temporaries 

 select the number of threads & thread blocks 

 

 Provides device memory management for kernels 

 Perform liveness analysis to determine when op inputs and 
outputs are dead on the GPU 

 Runtime frees dead data when it experiences memory 
pressure 

 

 



Cuda Code Generation 

 With a library approach we can only launch pre-written kernels 

 Code generation enables kernels containing user-defined 
functions and optimization opportunities 

 e.g., fuse operations into one kernel and keep intermediate results in 
registers 
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Performance Results 

 Machine 
 Two quad-core Nehalem 2.67 GHz processors 
 NVidia Tesla C2050 GPU 

 

 Application Versions 
 OptiML + Delite 
 MATLAB 

 version 1: multi-core (parallelization using 
“parfor” construct and BLAS) 

 version 2: GPU  

 C++ 
 used Armadillo linear algebra library for a 

sequential baseline 
 Algorithmically identical to OptiML version 



OptiML vs. MATLAB vs. Armadillo (C++) 

OptiML Parallelized MATLAB C++

1
.0

 

1
.6

 

1
.8

 

1
.9

 

4
1

.3
 

0
.5

 

0
.9

 

1
.4

 

1
.6

 

2
.6

 

0
.6

 

0.00

0.50

1.00

1.50

2.00

2.50

1 CPU2 CPU4 CPU8 CPU CPU

+

GPU

N
o

r
m

a
li
z
e
d

 E
x
e
c
u

ti
o
n

 

T
im

e
 

GDA 

1
.0

 

1
.9

 

3
.6

 

5
.8

 

1
.1

 

0
.1

 

0
.2

 

0
.2

 

0
.3

 

1
.2

 
  0.00

  2.00

  4.00

  6.00

  8.00

  10.00

1 CPU 2 CPU 4 CPU 8 CPU CPU +

GPU

0
.0

1
 

100.00

110.00

Naive Bayes 

.. 

1
.0

 

1
.7

 

2
.7

 

3
.5

 

1
1

.0
 

1
.0

 

1
.9

 

3
.2

 

4
.7

 

8
.9

 

0
.6

 

0.00

0.50

1.00

1.50

2.00

1 CPU 2 CPU 4 CPU 8 CPU CPU +

GPU

RBM 

1
.0

 

2
.1

 

4
.1

 

7
.1

 

2
.3

 

0
.3

 

0
.4

 

0
.4

 

0
.4

 0
.3

 

1
.2

 

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

1 CPU 2 CPU 4 CPU 8 CPU CPU +

GPU

K-means 

1
.0

 

1
.9

 

3
.1

 

4
.2

 

1
.1

 

0
.9

 

1
.2

 

1
.4

 

1
.4

 0
.8

 

  0.00

  0.50

  1.00

  1.50

  2.00

1 CPU 2 CPU 4 CPU 8 CPU CPU +

GPU

0
.1

 

7.00

15.00

SVM 

.. 

1
.0

 

1
.4

 

2
.0

 

2
.3

 

1
.7

 

0
.5

 

0
.9

 

1
.3

 

1
.1

 

0
.4

 

0
.5

 

0.00

0.50

1.00

1.50

2.00

2.50

3.00

1 CPU 2 CPU 4 CPU 8 CPU CPU +

GPU

Linear Regression 



Conclusions 

 DSLs can provide both productivity and performance 
on heterogeneous hardware 

 Need to simplify the process of developing DSLs for 
parallelism 

 Delite provides a framework for creating heterogeneous 
parallel DSLs 

 Performs generic, parallel, and domain-specific 
optimizations in a single system 

 Visit us at ppl.stanford.edu 

 Link to GitHub project 

 Related publications & projects 


