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Benefits of Using DSLs for 
Parallelism  

Productivity  

ÅShield most programmers from the difficulty of parallel 
programming  

ÅFocus on developing algorithms and applications and not on low 
level implementation details  

Performance  

ÅMatch high level domain abstraction to generic parallel execution 
patterns  

ÅRestrict expressiveness to more easily and fully extract available 
parallelism  

ÅUse domain knowledge for static/dynamic optimizations  

Portability and forward scalability  

ÅDSL & Runtime can be evolved to take advantage of latest 
hardware features  

ÅApplications remain unchanged  

ÅAllows innovative HW without worrying about application portability  



DSLs: Compiler vs. Library  

Â A Domain -Specific Approach to Heterogeneous 
Parallelism , Chafi et al.  
Â A framework for parallel DSL libraries  

Â Used data -parallel patterns and deferred execution 
(transparent futures) to execute tasks in parallel  

 

Â Why write a compiler?  
Â Static optimizations (both generic and domain -specific)  

Â All DSL abstractions can be removed from the generated 
code  

Â Generate code for hardware not supported by the host 
language  

Â Full -program analysis  



Common DSL Framework  

Â Building a new DSL  
Â Design the language (syntax, operations, abstractions, etc.)  
Â Implement compiler (parsing, type checking, optimizations, etc.)  
Â Discover parallelism (understand parallel patterns)  
Â Emit parallel code for different hardware (optimize for low - level 

architectural details)  
Â Handle synchronization, multiple address spaces, etc.  

 
Â Need a DSL infrastructure  

Â Embed DSLs in a common host language  
Â Provide building blocks for common DSL compiler & runtime 

functionality  
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DSL Intermediate 
Representation (IR)  
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Building an IR  

Â OptiML : A DSL for machine learning  

Â Built using Delite  

Â Supports linear algebra (Matrix/Vector) operations  

 

 

 

 

 

 

 

 

Â DSL methods build IR as program runs  

//a, b, c, d : Matrix  
val  x = a * b + c * d  

def  infix_+(a: Matrix, b: Matrix) =  
  new MatrixPlus ( a,b )  
 
def  infix_*(a: Matrix, b: Matrix) =  
  new MatrixTimes ( a,b )  
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