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Benefits of Using DSLs for 
Parallelism 

Productivity 

•Shield most programmers from the difficulty of parallel 
programming 

•Focus on developing algorithms and applications and not on low 
level implementation details 

Performance 

•Match high level domain abstraction to generic parallel execution 
patterns 

•Restrict expressiveness to more easily and fully extract available 
parallelism 

•Use domain knowledge for static/dynamic optimizations 

Portability and forward scalability 

•DSL & Runtime can be evolved to take advantage of latest 
hardware features 

•Applications remain unchanged 

•Allows innovative HW without worrying about application portability 



DSLs: Compiler vs. Library 

 A Domain-Specific Approach to Heterogeneous 
Parallelism, Chafi et al. 
 A framework for parallel DSL libraries 

 Used data-parallel patterns and deferred execution 
(transparent futures) to execute tasks in parallel  

 

 Why write a compiler? 
 Static optimizations (both generic and domain-specific) 

 All DSL abstractions can be removed from the generated 
code 

 Generate code for hardware not supported by the host 
language 

 Full-program analysis 



Common DSL Framework 

 Building a new DSL 
 Design the language (syntax, operations, abstractions, etc.) 
 Implement compiler (parsing, type checking, optimizations, etc.) 
 Discover parallelism (understand parallel patterns) 
 Emit parallel code for different hardware (optimize for low-level 

architectural details) 
 Handle synchronization, multiple address spaces, etc. 

 
 Need a DSL infrastructure 

 Embed DSLs in a common host language 
 Provide building blocks for common DSL compiler & runtime 

functionality 
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Building an IR 

 OptiML: A DSL for machine learning 

 Built using Delite 

 Supports linear algebra (Matrix/Vector) operations 

 

 

 

 

 

 

 

 

 DSL methods build IR as program runs 

//a, b, c, d : Matrix 
val x = a * b + c * d 

def infix_+(a: Matrix, b: Matrix) =  
  new MatrixPlus(a,b) 
 
def infix_*(a: Matrix, b: Matrix) =  
  new MatrixTimes(a,b) 
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Times 
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DSL Optimizations 

 DSL developer defines how DSL operations create IR nodes 

 

 Specialize implementation of operation for each occurrence 
by pattern matching on the IR 

 

 This technique can be used to control merely what to add 
to IR or to perform IR rewrites 

 Use this to apply linear algebra simplification rules 
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OptiML Linear Algebra Rewrites 

 A straightforward translation of the Gaussian Discriminant 
Analysis (GDA) algorithm from the mathematical 
description produces the following code: 

 

 

 
 A much more efficient implementation recognizes that 

 

 

 

 Transformed code was 20.4x faster with 1 thread and 
48.3x faster with 8 threads.    

 𝑥𝑖

𝑛

𝑖=0

∗ 𝑦𝑖 → 𝑋 : , 𝑖 ∗ 𝑌 𝑖, : = 𝑋 ∗ 𝑌
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val sigma = sum(0,m) { i => 
  val a = if (!x.labels(i)) x(i) - mu0  
          else x(i) - mu1 
  a.t ** a 
} 



Delite DSL Framework 

 Building a new DSL 
 Design the language (syntax, operations, 

abstractions, etc.) 
 Implement compiler  

 Domain-specific analysis and optimization 
 Lexing, parsing, type-checking, generic optimizations 

 Discover parallelism (understand parallel patterns) 
 Emit parallel code for different hardware (optimize 

for low-level architectural details) 
 Handle synchronization, multiple address spaces, etc. 

 



Delite Ops 

 Encode known parallel execution patterns 

 Map, filter, reduce, … 

 Bulk-synchronous foreach 

 Divide & conquer 

 

 Delite provides implementations of these 
patterns for multiple hardware targets 

 e.g., multi-core, GPU 

 

 DSL author maps each domain operation to the 
appropriate pattern 
 Delite handles parallel optimization, code generation, and 

execution for all DSLs 



Multiview Delite IR 
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Delite Op Fusion 

 Operates on all loop-based ops 

 

 Reduces op overhead and improves locality 

 Elimination of temporary data structures 

 Merging loop bodies may enable further optimizations 

 

 Fuse both dependent and side-by-side operations 

 Fused ops can have multiple inputs & outputs 

 

 Algorithm: fuse two loops if 

 size(loop1) == size(loop2) 

 No mutual dependencies (which aren’t removed by fusing) 

 



Downsampling in OptiML 
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Multiview Delite IR 
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 Optimizations 
 Common subexpression elimination (CSE) 

 Dead code elimination (DCE) 

 Constant folding 

 Code motion (e.g., loop hoisting) 

 

 Side effects and alias tracking 

 

 All performed at the granularity of DSL 
operations 
 e.g., MatrixMultiply 

 

Generic IR  



Intermediate Representation (IR) 

Delite DSL Compiler Infrastructure 

        Scala Embedding  

              Framework 

Delite 

Execution 

Graph 

Delite Parallelism 

Framework 

Base IR 

Generic 

Analysis & Opt. 

Code Generation 

Kernels 

(Scala, C, 

Cuda) 

Liszt 

program 

OptiML 

program 

DS IR 

Domain 

Analysis & Opt. 

Delite IR 

Parallelism Analysis, 

Opt. & Mapping 

⇒ ⇒ 

DSL Data 

Structures 



Heterogeneous Code Generation 

 Delite can have multiple registered target code 
generators (Scala, Cuda, …)  
 Calls all generators for each Op to create kernels 

 Only 1 generator has to succeed  

 

 Generates an execution graph that enumerates 
all Delite Ops in the program 
 Encodes parallelism within the application 

 Contains all the information the Delite Runtime requires to 
execute the program 

 Op dependencies, supported targets, etc. 



Delite Runtime 
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Schedule & Kernel Compilation 

 Compile execution graph to executables for each 
resource after scheduling 
 Defer all synchronization to this point and optimize 

 

 Kernels specialized based on number of 
processors allocated for it 

 e.g., specialize height of tree reduction 

 

 Greatly reduces overhead compared to dynamic 
deferred execution model 

 Can have finer-grained Ops with less overhead 



Benefits of Runtime Codegen 

 GDA with 64 element input 
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GPU Management 

 Cuda host thread launches kernels and automatically 
performs data transfers as required by schedule 

 Compiler provides helper functions to 

 Copy data structures between address spaces 

 pre-allocate outputs and temporaries 

 select the number of threads & thread blocks 

 

 Provides device memory management for kernels 

 Perform liveness analysis to determine when op inputs and 
outputs are dead on the GPU 

 Runtime frees dead data when it experiences memory 
pressure 

 

 



Cuda Code Generation 

 With a library approach we can only launch pre-written kernels 

 Code generation enables kernels containing user-defined 
functions and optimization opportunities 

 e.g., fuse operations into one kernel and keep intermediate results in 
registers 
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Performance Results 

 Machine 
 Two quad-core Nehalem 2.67 GHz processors 
 NVidia Tesla C2050 GPU 

 

 Application Versions 
 OptiML + Delite 
 MATLAB 

 version 1: multi-core (parallelization using 
“parfor” construct and BLAS) 

 version 2: GPU  

 C++ 
 used Armadillo linear algebra library for a 

sequential baseline 
 Algorithmically identical to OptiML version 



OptiML vs. MATLAB vs. Armadillo (C++) 

OptiML Parallelized MATLAB C++
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Conclusions 

 DSLs can provide both productivity and performance 
on heterogeneous hardware 

 Need to simplify the process of developing DSLs for 
parallelism 

 Delite provides a framework for creating heterogeneous 
parallel DSLs 

 Performs generic, parallel, and domain-specific 
optimizations in a single system 

 Visit us at ppl.stanford.edu 

 Link to GitHub project 

 Related publications & projects 


