
Efficient Parallel Graph Exploration on

Multi-Core CPU and GPU

Pervasive Parallelism Laboratory

Stanford University

Sungpack Hong, Tayo Oguntebi,

and Kunle Olukotun

Graph and its Applications

� Graph

� Fundamental data structure

� G = (N,E): Arbitrary relationship (E) between data
entities (N)

� Wide range of Applications

� Scheduling task graphs

� PDE (Partial Differential Equation) solver on mesh

� Artificial Intelligence – Bayesian network

� Bioinformatics – molecular interaction graph

� Social network analysis

� Web graphs

� Graph database – schema-less data management

Requires
large
graph

analysis

Performance Issues

� Single-core machines showed limited performance
for large graph analysis problems

� A lot of random memory accesses

+ Data does not fit in cache

� Performance is bound to memory latency

� Conventional hardware units (e.g. floating point,
branch predictors, out-of-order) do not help much

� Use parallelism to accelerate graph analysis

� Plenty of data-parallelism in large graph instances

� Latency bound � Bandwidth bound

� Exploit recent proliferation of parallel computers:

Multi-core CPU and GPU

Graph Exploration

� Breadth first search (BFS)

� A systematic way to traverse the graph

� A building block for many other algorithms

� s-t connectivity, betweeness centrality, connected
component, community detection, max-flow …

� Can be parallelized (c.f. depth first search)

� More about this in the next slide

� Many previous researches on implementation

� For various architectures: Cluster, Cell, Cray, Multi-
core/SMP, GPU, …

� Preferred as parallel benchmark

� See graph500.org

Parallel BFS Algorithm

� Start from a root, and visit all the
connected nodes in a graph

� Nodes closer to the root are visited first

� Nodes of the same hop-distance (level)
from the root can be visited in parallel

1
0

1

1 1
2

2

2

22

2

Three Node-sets

Nodes of the
current level

Neighbors of
current level
nodes

Add non-visited neighbors
to Next and Visited setSynchronization at the end

of each level

Implementation for Multi-Core CPU

� Level Synchronous Parallel BFS

� Requires synchronization

at everyl evel

� Degree of parallelism limited by

(# nodes) in each level

� State-of-Art Implementation

� [Agarwal et. al. SC 2010]

� V � bitmap

� Maximize cache hit ratio

� Atomic update required: ‘test and test-and-set’

� C, N � queue

� Local Queue + Global Queue

� Complex queue implementation based on ticket-lock and
fast forwarding

� Not so much details revealed in their paper

� Avoid unnecessary cache-to-cache traffic

Outperformed
previous
implementations

Can we do better?

� Issues

� Requires complex queue implementation

� Can we do better even without it?

� Our two implementations

� Queue-Based Implementation

� Approximate Agarwal et. al.’s approach

� Bitmap

� Test and Test-and-Set

� Local Q + Global Q

� Standard Queue

� Another implementation

� Exploit properties of the graphs

� Exploit properties of the machines

Observation on Graphs

� Small-World Property [Watts and Strogatz, Nature 1998]

� Any randomly-shaped graphs has a small diameter

(“Six-degrees of separation”)

� A fundamental property

: web graphs, social graphs, molecular graphs, …

…

…

…

…

Regular Graph:
Diameter � O(N)

Adding Ramdom re-wiring:
Diameter � O(c)

(e.g.) Number of nodes at each BFS
level (16 million node graph)

[Corollary] There must be at least one level
that has O(N) nodes.

Total execution
time is governed
by these critical

levels

Read-based implementation

� Another implementation of ours

� V: Bitmap

� C, N: Level-Array

� A single O(N)-sized array that
keeps the level of each node

inf inf inf … inf inf

0 N-1

1 0 inf … 1 inf

1

0 N-2

N-1 2

inf 0 inf … inf inf

1 0 2 … 1 2

Initialize

Instead of keeping
queues, update the
value in the level
array.

Level 0

…

while (!finished) {

foreach (c: G.Nodes) {

if (level[c] != curr_lev)

continue;

…

}

…

lev++;

}

Read the entire array!

1 2

Level 1

Adding nodes to Next set

Iterate nodes in Current set

What’s the benefit of that?

(1) The array is read sequentially

(1)-b Overall access pattern
become more sequential as well

(2) There are only a few level;

In critical levels, you have to
visit O(N) nodes anyway.

10x Diff

0 4 2 9 7 1

a b c h i j k n o p q

Current
Queue

Packed
Adjacency
List

…

0 2 4

(a) Data-Access Pattern of Queue-Based Method

a b c d e f g h i j k n o p q
Packed
Adjacency
List

1 1 1

I

N

F

1

I

N

F

I

N

F

…

Level
List

1 0 1

0 1 2 4

0 1 2 3 4

(b) Data-Access Pattern of Read-Based Method

But cannot eliminate all the natural

random accesses.

Queue-Based vs. Read-Based

� Level-wise execution time breakdown Small increase
in non-critical
levels (1,2, 6
and 7)

Reduction in
critical levels
(3, 4 and 5)(e.g.) Number of nodes at each BFS level (16

million node graph)

What about big-world graphs?

� Worst-case inputs for Read-based method:

1. High-diameter graphs

� Recent graph applications (e.g. social network)
deal with small-world graphs more frequently

� Still, there are high-diameter graphs: e.g. mesh

2. Small search instance

� When the graph is not (strongly) connected

� Your traversal finishes after visiting only small
portion of the graph

……

Preventing worst case execution

� Our solution: hybrid method

� Choose appropriate method (Read or Queue),
adaptively at each level

� Based on the size of Next set and its growth rate.

� Finite State Machine

Process the root node,
sequentially.

If Next is large enough
(e.g. p% of num nodes) or
exponential growing,
migrate to Read method

Go Parallel (with
Queues) when there
are enough # nodes.

Return to Queue method
when Next is shrinking

Transient state:
Read from Queue,
Write to Array

The FSM allows
best of both
methods

Result: worst-case avoidance

Tree

Large search
instances

Small search
instances

� BFS on tree

� Y-axis: time (high is bad)

� Mix of large search instances (good for Read)

and small search instances (good for Queue)

Result: worst-case avoidance

� 2-D Mesh

� 4000x4000

� Diameter is O(sqrt(N))

� (# nodes) at each level increases not
exponentially, but linearly

Read-based
method showed a
lot of overheads

Hybrid
Queue+Read

method avoids it

Graph Exploration on GPU

� GPU Benefits

� Large memory bandwidth (GDDR, # channels)

� Massively parallel hardware

� HW multi-threading + SIMD(/SIMT)

� HW Traits similar to Cray-XMT

� But much cheaper

� GPU Issues

� Limited capacity (~ a few GB)

� Our approach:

� Use GPU, only if the graph fits

� Use multi-core CPU, otherwise

� But how much performance does this give?

Graph Exploration on GPU

� BFS on GPU

� [Harish and Narayanan, HiPC 2007], [Hong et al, PPoPP2011]

� Similar to Queue-based implementation

� Visited, Next, Current � Level Array

� If level[node] is INF, then node is not visited

� Hard to do bitwise atomic operation efficiently on GPU

� A node can be written multiple times by different parents �
Okay, because the written level value is always same

� ... But it has the same issue as Queue-based method

� Bad for small or long-diameter graphs

2

1 1

Hybrid CPU+GPU

� An extension to the previous FSM

SEQ
QUEUE

FOR
GPU

GPU

|Next| > T1

|Next| > α *|Curr|
and |Next| >T4

InitGPUCopyBack

Finished

QUEUE

|Next| ≤ T4

Migrate to GPU, only if
the graph is growing
exponentially

Otherwise, go
back to CPU-
based FSM

Need data copy to GPU.
(i.e. ship out the contents
in the queue)

Copy back level values
from GPU

GPU: Worst-case avoidance

� BFS on tree with GPU

Small
Searches

Large
Searches

Hybrid
method
avoids
worst-case

GPU: Worse for
small instances
(fixed cost)

Experiments on Small-world Graphs

� Multi-Core CPU

� Intel Nehalem (X5550)
2.67GHz

� 2 Socket x 4 Core x 2 HT

� LLC: 8MB x 2

� Main Memory: 24GB

� GPU

� Nvidia Fermi (C2050) 1.15GHz

� 14 SM x (2 warps) x 32 SIMT

� LLC: 2MB

� Main Memory: 3GB

� Measurement

� Start from multiple root nodes

� Measure average execution
time from multiple executions

� Graphs

� Two kinds of widely
accepted synthetic graphs

� Random (Erdos-Renyi)

� Simple uniform random

� RMAT

� Skewed degree distribution
(good)

� Many (~50%) unconnected
nodes (bad)

� 32mil nodes, 256 mil edges

Performance Results

� Multi-Core CPU Result

� y-axis: processing rate (Higher is better)

� SC10-EP: numbers from [Agarwal et. al SC10]

� Measured for same sized graph on a faster (2.9Ghz)
machine

16 thread uses
hyper-threading

Read-based >
Queue-basedRead+Queue gives

small performance
improvement

Queue-Based
approximates

SC10

(a) Uniform (b) RMAT

RMAT > Uniform
(due to unconnected

nodes)

Performance Results

� GPU Result

� Same graph inputs
GPU:1.5x ~ 2x

(compared to best
CPU 16 threads)

CPU + GPU can
give small

performance
improvement

(a) Uniform (b) RMAT

Changing Graph Size

� Varying number of nodes

� 1mil ~ 64 mil

� # Edges = (# Nodes) x 8

� # Threads = 16

Performance difference
widens as graph size grows
(cache-cache miss doesn’t

matter much)

(a) Uniform (b) RMAT

Changing Graph Size

� Varying number of edges

� 256 mil ~ 2048 mil

� # Nodes = 32 mil

� # Threads = 16
GPU still performs better;

but has hit size limit

Performance
gap widens as
the graph size

grows

(a) Uniform (b) RMAT

Nehalem Fermi Core Tesla SC10-EP SC10-EX

Freq. 2.67GHz 1.15GHz 2.33GHz 1.40GHz 2.93GHz 2.26GHz

(# Cores) 2 x 4 (x 2) 14 x 2 2 x 4 30 2 x 4 (x 2) 4 x 8 (x 2)

SIMD/SIMT - 32 - 32 - -

LLC (MB) 16 MB 2 MB 8 MB - 16 MB 96 MB

Memory 24 GB 3 GB 32 GB 896 MB 48 GB 256 GB

Rnd Read 0.98 GB/s 2.71 GB/s 0.25 GB/s 3.15 GB/s - -

Architectural Effects

#Node :16/32 mil

Avg. Degree = 8

Core vs.
Nehalem:
Memory

BW

Fermi vs. Tesla:
L2 Cache as
write buffer

CPU vs. GPU?
(1) Size of graph
(2) What you can

afford

Nehalem Nehalem

Summary

� “Why” rather than “How”

� Exploited properties of graphs and machines

� Small-world property

� Bandwidth difference between sequential
access and random access

� A simple state-machine to avoid worst-case
execution

� Graph exploration on GPU

� Limited capacity

� Faster execution due to memory bandwidth

Thank you

� Questions?

