
Transactional
Predication: High-

Performance Concurrent
Sets and Maps for STM

Nathan G. Bronson, Jared Casper,
Hassan Chafi, Kunle Olukotun

Stanford CS

1

PODC - 26 July 2010

Thread-safe shared maps

2

map

+ big lock

p
ro

g
ra

m
m

a
b

ili
ty

scalability

concurrent map

+ per-key CAS

transactional map

+ atomic block

What I’d like
m = new TransactionalHashMap

v = m.get(key)
m.put(key, pureFunc(key))

atomic {
prev = m.remove(key1)
m.put(key2, prev)

}

atomic {
fwd.put(name, phoneNumber)
reverse.put(phoneNumber, name)

}

atomic {
m.get(k).observers += self

}

3

atomic access to

multiple maps

composes with STM

reads and writes

atomic access to

multiple keys

fast access

outside a txn

atomic access to

multiple maps

atomic access to

multiple keys

fast access

outside a txn

Why not just code a map using STM?

Single-thread overheads

 Each map op requires multiple STM reads/writes

Reads of shared data must be validated

Writes to shared data must be logged or buffered

 Non-transactional map ops must start a transaction

Even though composition is not required!

Scalability limits

 Not all structural conflicts are semantic conflicts

 More threads false conflicts more frequent

 Bigger txns false conflicts more wasteful

4

STM challenges: overheads

s = { ’Bob, ’Dave }

atomic {

s.contains(’Alice)

}

5

Dave

Bob

s

STM challenges: overheads

s = { ’Bob, ’Dave }

atomic {

s.contains(’Alice)

}

6

Dave

Bob

s

Read set contains 3 entries

A transaction is required for even a
solitary non-transactional access

STM challenges: false conflicts

s = { ’Bob, ’Dave }

ThreadA: atomic {

s.contains(’Alice)

}

ThreadB: atomic {

s.add(’Carol)

}

7

Dave

Bob

s

STM challenges: false conflicts

s = { ’Bob, ’Dave }

ThreadA: atomic {

s.contains(’Alice)

}

ThreadB: atomic {

s.add(’Carol)

}

8

Dave

Bob

s

Carol

STM challenges: false conflicts

s = { ’Bob, ’Dave }

ThreadA: atomic {

s.contains(’Alice)

}

ThreadB: atomic {

s.add(’Carol)

}

9

Carol

Bob

s

Dave

contains(’Alice) and add(’Carol) are semantically
disjoint, but have a structural conflict

STM challenges: false conflicts

s = { ’Bob, ’Dave }

ThreadA: atomic {

s.contains(’Alice)

}

ThreadB: atomic {

s.add(’Carol)

}

10

Carol

Bob

s

Dave

contains(’Alice) and add(’Carol) are semantically
disjoint, but have a structural conflict

Are all the STM accesses required?

 The read or write of a single memory location
corresponds to accessing the set’s abstract state

 contains(’Alice) bob.left.stmRead()
 add(’Carol) bob.right.stmWrite(...)

 Additional reads and writes are required to navigate to
that location and maintain the data structure

 Overheads and false conflicts come mainly from the
navigating and maintenance accesses

We should navigate and maintain the structure outside
the transaction, access the abstract state inside the
transaction

11

Factoring the set data structure

1. Don’t store the transactional set S directly

2. Store the elements of a superset U S

3. Store a predicate f: U {0,1} that tests

membership, f(e) = 1 iff e S

The trick

Adding e to U doesn’t change S if f(e) = 0

U and f can be grown in an escape action

 The STM only needs to manage 1 bit per e

12

Storing U and f

1. Don’t store the transactional set S directly

2. Store the elements of a superset U S

3. Store a predicate f: U {0,1} that tests

membership, f(e) = 1 iff e S

A thread-safe representation

univ = ConcurrentMap[A,TVar[Boolean]]

U = univ.keySet()

f(e) = univ.get(e).stmRead()

13

A minimal* implementation
class THashSet[A] {

def contains(e: A) = bitForElem(e).stmRead()
def add(e: A) { bitForElem(e).stmWrite(true) }
def remove(e: A) { bitForElem(e).stmWrite(false) }

private val univ = new ConcurrentHashMap[A,TVar[Boolean]]

private def bitForElem(e: A): TVar[Boolean] = {
var bit = univ.get(e)
if (bit == null) {

val fresh = new TVar(false)
bit = univ.putIfAbsent(e, fresh)
if (bit == null)
bit = fresh

}
return bit

}
}

14

* - We’ll add GC of TVars later

What does the factoring buy us?

 Lower STM overheads
 Read- and write-set entries are minimized

 Set read is one txn read
 Set insert or removal is one txn write

 Non-composed accesses don’t need a transaction
 STMs can heavily optimize isolation barriers

 Better scalability
 No structural false conflicts

 Transactional accesses to the set conflict if and only if they
perform a conflicting operation on the same key

 Atomicity and isolation still managed by the STM
 Optimistic concurrency and invisible readers

 Modular blocking with retry/orElse works

15

Predicating a map

TSet[A]
ConcurrentMap[A,TVar[Boolean]

TMap[K,V]
ConcurrentMap[K,TVar[Option[V]]

univ.get(k).stmRead() == Some(v)
if the current txn context observes k ↦ v

univ.get(k).stmRead() == None
if the current txn context observes k to be absent

16

Trimming the universe

e can be removed when f(e) = 0 and no txns are using e

(reading, writing, or blocked on retry for e’s TVar)

1. Reference counting
 Enter before use, exit on txn completion

 Add bonus when committing f(e) = 1

 Speculatively read f(e), skip entry/exit when bonus is present

2. Soft reference to a throw-away token
 When f(e) = 1, TVar holds a strong reference to the token

 When f(e) = 0, TVar has only a soft reference

 Txn using e keeps a strong reference

 GC of token means all participants agree on absence

17

Performance: low contention

18

non-txn 2 ops/txn 64 ops/txn

80-10-10

0-50-50

get% - put% - remove%

80-10-10 80-10-10

0-50-50 0-50-50

key range of 200K

Performance: high contention

19

non-txn 2 ops/txn 64 ops/txn

80-10-10

0-50-50

get% - put% - remove%

80-10-10 80-10-10

0-50-50 0-50-50

key range of 2K

Conclusion

Transactionally-predicated sets and maps
 Fast when used outside an atomic block

 Full STM integration

 Lower overhead and better scalability than existing
approaches

 Retains the features of the underlying STM
Optimistic concurrency and invisible reads
Opacity
Modular blocking

Thank you

20

Previous methods for
semantic conflict detection

Open nesting
 Carlstrom et al., and Ni et al., both PPoPP’07

 Reduces false conflicts

 Worsens STM overheads

 Transactional boosting
 Herlihy et al., PPoPP’08

 Reduces false conflicts and TM overheads

 Adds non-transactional work to locate associated locks

 Pessimistic visible readers limit concurrency and
scalability

 Boosting voids the forward progress, opacity, and
modular blocking properties of the underlying STM

21

Boosting (Herlihy et al.)

 Start with a thread-safe object
 Implemented without STM

 Associate a lock with each set of non-commutative
operations
 set.op(k1) and set.op(k2) only affect each other if k1 = k2

 So, associate one lock per key

 Set[A] => { s: ConcurrentSet[A];
locks: ConcurrentMap[A,Lock] }

 Transactional access
 Acquire locks(key), then call s.op(key)

 Even if key is not in the set

 Hold lock until the end of the transaction

 Record result of op, apply compensating action on rollback

22

Problems with Txn Boosting

 Scalability + performance
 Pessimistic concurrency means readers cannot overlap writers

 Adds an extra concurrent map lookup to each operation

 Correctness
 Deadlock must be detected and avoided separately

 Functionality
 Not compatible with conditional retry (retry + orElse)

Basically, this is a pessimistic visible-reader STM
implemented using callbacks. It ignores most of the
research into how to build an efficient and scalable
STM!

23

THashSet: An Example

24

begin T1
S.contains(10)
| bitForElem(10)
| | univ.get(10) -> null
| | f = new TVar(false)
| | univ.putIfAbsent(10,f)
| | -> null
| -> f
| f.stmRead() -> false
-> false

// other work in txn

on f

begin T2
S.add(10)
bitForElem(10)
| f = univ.get(10)
-> f
f.stmWrite(true)

commit

Transactional Predication:
Enumeration + Search

 Basic strategy
 Enumerate or search in the underlying map

 Skip entries that are conceptually absent

 Add transactional state that is modified by any structural
insertion that conflicts with the search

 Examples
 Unordered collection: maintain a striped size

 Insertions and removals update their stripe
 Iteration counts entries, checks against the sum of the stripes

 Ordered collection: maintain per-node predecessor and
successor insertion counts
 Insertion counts are incremented non-transactionally when

updating the structure, with recursive helping to avoid races
 Search and enumeration read the insertion counts

25

