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Thread-safe shared maps
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What I’d like
m = new TransactionalHashMap

v = m.get(key)
m.put(key, pureFunc(key))

atomic {
prev = m.remove(key1)
m.put(key2, prev)

}

atomic {
fwd.put(name, phoneNumber)
reverse.put(phoneNumber, name)

}

atomic {
m.get(k).observers += self

}
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Why not just code a map using STM?

Single-thread overheads

 Each map op requires multiple STM reads/writes

Reads of shared data must be validated

Writes to shared data must be logged or buffered

 Non-transactional map ops must start a transaction

Even though composition is not required!

Scalability limits

 Not all structural conflicts are semantic conflicts

 More threads false conflicts more frequent

 Bigger txns false conflicts more wasteful
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STM challenges: overheads

s = { ’Bob, ’Dave }

atomic {

s.contains(’Alice)

}
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STM challenges: overheads

s = { ’Bob, ’Dave }

atomic {

s.contains(’Alice)

}
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solitary non-transactional access



STM challenges: false conflicts

s = { ’Bob, ’Dave }

ThreadA: atomic {

s.contains(’Alice)

}

ThreadB: atomic {

s.add(’Carol)

}
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STM challenges: false conflicts

s = { ’Bob, ’Dave }

ThreadA: atomic {

s.contains(’Alice)

}

ThreadB: atomic {

s.add(’Carol)

}
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STM challenges: false conflicts

s = { ’Bob, ’Dave }

ThreadA: atomic {

s.contains(’Alice)

}

ThreadB: atomic {

s.add(’Carol)

}
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Are all the STM accesses required?

 The read or write of a single memory location 
corresponds to accessing the set’s abstract state

 contains(’Alice)  bob.left.stmRead()
 add(’Carol)  bob.right.stmWrite(...)

 Additional reads and writes are required to navigate to 
that location and maintain the data structure

 Overheads and false conflicts come mainly from the 
navigating and maintenance accesses

We should navigate and maintain the structure outside 
the transaction, access the abstract state inside the 
transaction
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Factoring the set data structure

1. Don’t store the transactional set S directly

2. Store the elements of a superset U S

3. Store a predicate f: U {0,1} that tests 

membership, f(e) = 1 iff e S

The trick

Adding e to U doesn’t change S if f(e) = 0

U and f can be grown in an escape action

 The STM only needs to manage 1 bit per e
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Storing U and f

1. Don’t store the transactional set S directly

2. Store the elements of a superset U S

3. Store a predicate f: U {0,1} that tests 

membership, f(e) = 1 iff e S

A thread-safe representation

univ = ConcurrentMap[A,TVar[Boolean]]

U = univ.keySet()

f(e) = univ.get(e).stmRead()

13



A minimal* implementation
class THashSet[A] {

def contains(e: A) = bitForElem(e).stmRead()
def add(e: A)      { bitForElem(e).stmWrite(true) }
def remove(e: A)   { bitForElem(e).stmWrite(false) }

private val univ = new ConcurrentHashMap[A,TVar[Boolean]]

private def bitForElem(e: A): TVar[Boolean] = {
var bit = univ.get(e)
if (bit == null) {

val fresh = new TVar(false)
bit = univ.putIfAbsent(e, fresh)
if (bit == null)
bit = fresh

}
return bit

}
}
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* - We’ll add GC of TVars later



What does the factoring buy us?

 Lower STM overheads
 Read- and write-set entries are minimized

 Set read is one txn read
 Set insert or removal is one txn write

 Non-composed accesses don’t need a transaction
 STMs can heavily optimize isolation barriers

 Better scalability
 No structural false conflicts

 Transactional accesses to the set conflict if and only if they 
perform a conflicting operation on the same key

 Atomicity and isolation still managed by the STM
 Optimistic concurrency and invisible readers

 Modular blocking with retry/orElse works
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Predicating a map

TSet[A] 
ConcurrentMap[A,TVar[Boolean]

TMap[K,V] 
ConcurrentMap[K,TVar[Option[V]]

univ.get(k).stmRead() == Some(v)
if the current txn context observes k ↦ v

univ.get(k).stmRead() == None
if the current txn context observes k to be absent
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Trimming the universe

e can be removed when f(e) = 0 and no txns are using e

(reading, writing, or blocked on retry for e’s TVar)

1. Reference counting
 Enter before use, exit on txn completion

 Add bonus when committing f(e) = 1

 Speculatively read f(e), skip entry/exit when bonus is present

2. Soft reference to a throw-away token
 When f(e) = 1, TVar holds a strong reference to the token

 When f(e) = 0, TVar has only a soft reference

 Txn using e keeps a strong reference

 GC of token means all participants agree on absence
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Performance: low contention
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Performance: high contention
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Conclusion

Transactionally-predicated sets and maps
 Fast when used outside an atomic block

 Full STM integration

 Lower overhead and better scalability than existing 
approaches

 Retains the features of the underlying STM
Optimistic concurrency and invisible reads
Opacity
Modular blocking

Thank you
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Previous methods for
semantic conflict detection

Open nesting
 Carlstrom et al., and Ni et al., both PPoPP’07

 Reduces false conflicts

 Worsens STM overheads

 Transactional boosting
 Herlihy et al., PPoPP’08

 Reduces false conflicts and TM overheads

 Adds non-transactional work to locate associated locks

 Pessimistic visible readers limit concurrency and 
scalability

 Boosting voids the forward progress, opacity, and 
modular blocking properties of the underlying STM
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Boosting (Herlihy et al.)

 Start with a thread-safe object 
 Implemented without STM

 Associate a lock with each set of non-commutative 
operations
 set.op(k1) and set.op(k2) only affect each other if k1 = k2

 So, associate one lock per key

 Set[A] => { s: ConcurrentSet[A];
locks: ConcurrentMap[A,Lock] }

 Transactional access
 Acquire locks(key), then call s.op(key)

 Even if key is not in the set

 Hold lock until the end of the transaction

 Record result of op, apply compensating action on rollback
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Problems with Txn Boosting

 Scalability + performance
 Pessimistic concurrency means readers cannot overlap writers

 Adds an extra concurrent map lookup to each operation

 Correctness
 Deadlock must be detected and avoided separately

 Functionality
 Not compatible with conditional retry (retry + orElse)

Basically, this is a pessimistic visible-reader STM 
implemented using callbacks. It ignores most of the 
research into how to build an efficient and scalable 
STM!
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THashSet: An Example
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begin T1
S.contains(10)
|  bitForElem(10)
|  |  univ.get(10) -> null
|  |  f = new TVar(false)
|  |  univ.putIfAbsent(10,f)
|  |      -> null
|  -> f
|  f.stmRead() -> false
-> false

// other work in txn

on f

begin T2
S.add(10)
bitForElem(10)
|  f = univ.get(10)
-> f
f.stmWrite(true)

commit



Transactional Predication: 
Enumeration + Search

 Basic strategy
 Enumerate or search in the underlying map

 Skip entries that are conceptually absent

 Add transactional state that is modified by any structural 
insertion that conflicts with the search

 Examples
 Unordered collection: maintain a striped size

 Insertions and removals update their stripe
 Iteration counts entries, checks against the sum of the stripes

 Ordered collection: maintain per-node predecessor and 
successor insertion counts
 Insertion counts are incremented non-transactionally when 

updating the structure, with recursive helping to avoid races
 Search and enumeration read the insertion counts
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