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Thread-safe shared maps
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What I’d like
m = new TransactionalHashMap

v = m.get(key)
m.put(key, pureFunc(key))

atomic {
prev = m.remove(key1)
m.put(key2, prev)

}

atomic {
fwd.put(name, phoneNumber)
reverse.put(phoneNumber, name)

}

atomic {
m.get(k).observers += self

}
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Why not just code a map using STM?

Single-thread overheads

 Each map op requires multiple STM reads/writes

Reads of shared data must be validated

Writes to shared data must be logged or buffered

 Non-transactional map ops must start a transaction

Even though composition is not required!

Scalability limits

 Not all structural conflicts are semantic conflicts

 More threads false conflicts more frequent

 Bigger txns false conflicts more wasteful
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STM challenges: overheads

s = { ’Bob, ’Dave }

atomic {

s.contains(’Alice)

}
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STM challenges: overheads

s = { ’Bob, ’Dave }

atomic {

s.contains(’Alice)

}
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solitary non-transactional access



STM challenges: false conflicts

s = { ’Bob, ’Dave }

ThreadA: atomic {

s.contains(’Alice)

}

ThreadB: atomic {

s.add(’Carol)

}
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STM challenges: false conflicts

s = { ’Bob, ’Dave }

ThreadA: atomic {

s.contains(’Alice)

}

ThreadB: atomic {

s.add(’Carol)

}
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STM challenges: false conflicts

s = { ’Bob, ’Dave }

ThreadA: atomic {

s.contains(’Alice)

}

ThreadB: atomic {

s.add(’Carol)

}
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Are all the STM accesses required?

 The read or write of a single memory location 
corresponds to accessing the set’s abstract state

 contains(’Alice)  bob.left.stmRead()
 add(’Carol)  bob.right.stmWrite(...)

 Additional reads and writes are required to navigate to 
that location and maintain the data structure

 Overheads and false conflicts come mainly from the 
navigating and maintenance accesses

We should navigate and maintain the structure outside 
the transaction, access the abstract state inside the 
transaction
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Factoring the set data structure

1. Don’t store the transactional set S directly

2. Store the elements of a superset U S

3. Store a predicate f: U {0,1} that tests 

membership, f(e) = 1 iff e S

The trick

Adding e to U doesn’t change S if f(e) = 0

U and f can be grown in an escape action

 The STM only needs to manage 1 bit per e
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Storing U and f

1. Don’t store the transactional set S directly

2. Store the elements of a superset U S

3. Store a predicate f: U {0,1} that tests 

membership, f(e) = 1 iff e S

A thread-safe representation

univ = ConcurrentMap[A,TVar[Boolean]]

U = univ.keySet()

f(e) = univ.get(e).stmRead()
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A minimal* implementation
class THashSet[A] {

def contains(e: A) = bitForElem(e).stmRead()
def add(e: A)      { bitForElem(e).stmWrite(true) }
def remove(e: A)   { bitForElem(e).stmWrite(false) }

private val univ = new ConcurrentHashMap[A,TVar[Boolean]]

private def bitForElem(e: A): TVar[Boolean] = {
var bit = univ.get(e)
if (bit == null) {

val fresh = new TVar(false)
bit = univ.putIfAbsent(e, fresh)
if (bit == null)
bit = fresh

}
return bit

}
}

14

* - We’ll add GC of TVars later



What does the factoring buy us?

 Lower STM overheads
 Read- and write-set entries are minimized

 Set read is one txn read
 Set insert or removal is one txn write

 Non-composed accesses don’t need a transaction
 STMs can heavily optimize isolation barriers

 Better scalability
 No structural false conflicts

 Transactional accesses to the set conflict if and only if they 
perform a conflicting operation on the same key

 Atomicity and isolation still managed by the STM
 Optimistic concurrency and invisible readers

 Modular blocking with retry/orElse works
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Predicating a map

TSet[A] 
ConcurrentMap[A,TVar[Boolean]

TMap[K,V] 
ConcurrentMap[K,TVar[Option[V]]

univ.get(k).stmRead() == Some(v)
if the current txn context observes k ↦ v

univ.get(k).stmRead() == None
if the current txn context observes k to be absent
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Trimming the universe

e can be removed when f(e) = 0 and no txns are using e

(reading, writing, or blocked on retry for e’s TVar)

1. Reference counting
 Enter before use, exit on txn completion

 Add bonus when committing f(e) = 1

 Speculatively read f(e), skip entry/exit when bonus is present

2. Soft reference to a throw-away token
 When f(e) = 1, TVar holds a strong reference to the token

 When f(e) = 0, TVar has only a soft reference

 Txn using e keeps a strong reference

 GC of token means all participants agree on absence

17



Performance: low contention
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Performance: high contention
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Conclusion

Transactionally-predicated sets and maps
 Fast when used outside an atomic block

 Full STM integration

 Lower overhead and better scalability than existing 
approaches

 Retains the features of the underlying STM
Optimistic concurrency and invisible reads
Opacity
Modular blocking

Thank you
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Previous methods for
semantic conflict detection

Open nesting
 Carlstrom et al., and Ni et al., both PPoPP’07

 Reduces false conflicts

 Worsens STM overheads

 Transactional boosting
 Herlihy et al., PPoPP’08

 Reduces false conflicts and TM overheads

 Adds non-transactional work to locate associated locks

 Pessimistic visible readers limit concurrency and 
scalability

 Boosting voids the forward progress, opacity, and 
modular blocking properties of the underlying STM
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Boosting (Herlihy et al.)

 Start with a thread-safe object 
 Implemented without STM

 Associate a lock with each set of non-commutative 
operations
 set.op(k1) and set.op(k2) only affect each other if k1 = k2

 So, associate one lock per key

 Set[A] => { s: ConcurrentSet[A];
locks: ConcurrentMap[A,Lock] }

 Transactional access
 Acquire locks(key), then call s.op(key)

 Even if key is not in the set

 Hold lock until the end of the transaction

 Record result of op, apply compensating action on rollback
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Problems with Txn Boosting

 Scalability + performance
 Pessimistic concurrency means readers cannot overlap writers

 Adds an extra concurrent map lookup to each operation

 Correctness
 Deadlock must be detected and avoided separately

 Functionality
 Not compatible with conditional retry (retry + orElse)

Basically, this is a pessimistic visible-reader STM 
implemented using callbacks. It ignores most of the 
research into how to build an efficient and scalable 
STM!
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THashSet: An Example
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begin T1
S.contains(10)
|  bitForElem(10)
|  |  univ.get(10) -> null
|  |  f = new TVar(false)
|  |  univ.putIfAbsent(10,f)
|  |      -> null
|  -> f
|  f.stmRead() -> false
-> false

// other work in txn

on f

begin T2
S.add(10)
bitForElem(10)
|  f = univ.get(10)
-> f
f.stmWrite(true)

commit



Transactional Predication: 
Enumeration + Search

 Basic strategy
 Enumerate or search in the underlying map

 Skip entries that are conceptually absent

 Add transactional state that is modified by any structural 
insertion that conflicts with the search

 Examples
 Unordered collection: maintain a striped size

 Insertions and removals update their stripe
 Iteration counts entries, checks against the sum of the stripes

 Ordered collection: maintain per-node predecessor and 
successor insertion counts
 Insertion counts are incremented non-transactionally when 

updating the structure, with recursive helping to avoid races
 Search and enumeration read the insertion counts
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