
Transactional
Predication: High-

Performance Concurrent
Sets and Maps for STM

Nathan G. Bronson, Jared Casper,
Hassan Chafi, Kunle Olukotun

Stanford CS

1

PODC - 26 July 2010

Thread-safe shared maps

2

map

+ big lock

p
ro

g
ra

m
m

a
b

ili
ty

scalability

concurrent map

+ per-key CAS

transactional map

+ atomic block

What I’d like
m = new TransactionalHashMap

v = m.get(key)
m.put(key, pureFunc(key))

atomic {
prev = m.remove(key1)
m.put(key2, prev)

}

atomic {
fwd.put(name, phoneNumber)
reverse.put(phoneNumber, name)

}

atomic {
m.get(k).observers += self

}

3

atomic access to

multiple maps

composes with STM

reads and writes

atomic access to

multiple keys

fast access

outside a txn

atomic access to

multiple maps

atomic access to

multiple keys

fast access

outside a txn

Why not just code a map using STM?

Single-thread overheads

 Each map op requires multiple STM reads/writes

Reads of shared data must be validated

Writes to shared data must be logged or buffered

 Non-transactional map ops must start a transaction

Even though composition is not required!

Scalability limits

 Not all structural conflicts are semantic conflicts

 More threads false conflicts more frequent

 Bigger txns false conflicts more wasteful

4

STM challenges: overheads

s = { ’Bob, ’Dave }

atomic {

s.contains(’Alice)

}

5

Dave

Bob

s

STM challenges: overheads

s = { ’Bob, ’Dave }

atomic {

s.contains(’Alice)

}

6

Dave

Bob

s

Read set contains 3 entries

A transaction is required for even a
solitary non-transactional access

STM challenges: false conflicts

s = { ’Bob, ’Dave }

ThreadA: atomic {

s.contains(’Alice)

}

ThreadB: atomic {

s.add(’Carol)

}

7

Dave

Bob

s

STM challenges: false conflicts

s = { ’Bob, ’Dave }

ThreadA: atomic {

s.contains(’Alice)

}

ThreadB: atomic {

s.add(’Carol)

}

8

Dave

Bob

s

Carol

STM challenges: false conflicts

s = { ’Bob, ’Dave }

ThreadA: atomic {

s.contains(’Alice)

}

ThreadB: atomic {

s.add(’Carol)

}

9

Carol

Bob

s

Dave

contains(’Alice) and add(’Carol) are semantically
disjoint, but have a structural conflict

STM challenges: false conflicts

s = { ’Bob, ’Dave }

ThreadA: atomic {

s.contains(’Alice)

}

ThreadB: atomic {

s.add(’Carol)

}

10

Carol

Bob

s

Dave

contains(’Alice) and add(’Carol) are semantically
disjoint, but have a structural conflict

Are all the STM accesses required?

 The read or write of a single memory location
corresponds to accessing the set’s abstract state

 contains(’Alice) bob.left.stmRead()
 add(’Carol) bob.right.stmWrite(...)

 Additional reads and writes are required to navigate to
that location and maintain the data structure

 Overheads and false conflicts come mainly from the
navigating and maintenance accesses

We should navigate and maintain the structure outside
the transaction, access the abstract state inside the
transaction

11

Factoring the set data structure

1. Don’t store the transactional set S directly

2. Store the elements of a superset U S

3. Store a predicate f: U {0,1} that tests

membership, f(e) = 1 iff e S

The trick

Adding e to U doesn’t change S if f(e) = 0

U and f can be grown in an escape action

 The STM only needs to manage 1 bit per e

12

Storing U and f

1. Don’t store the transactional set S directly

2. Store the elements of a superset U S

3. Store a predicate f: U {0,1} that tests

membership, f(e) = 1 iff e S

A thread-safe representation

univ = ConcurrentMap[A,TVar[Boolean]]

U = univ.keySet()

f(e) = univ.get(e).stmRead()

13

A minimal* implementation
class THashSet[A] {

def contains(e: A) = bitForElem(e).stmRead()
def add(e: A) { bitForElem(e).stmWrite(true) }
def remove(e: A) { bitForElem(e).stmWrite(false) }

private val univ = new ConcurrentHashMap[A,TVar[Boolean]]

private def bitForElem(e: A): TVar[Boolean] = {
var bit = univ.get(e)
if (bit == null) {

val fresh = new TVar(false)
bit = univ.putIfAbsent(e, fresh)
if (bit == null)
bit = fresh

}
return bit

}
}

14

* - We’ll add GC of TVars later

What does the factoring buy us?

 Lower STM overheads
 Read- and write-set entries are minimized

 Set read is one txn read
 Set insert or removal is one txn write

 Non-composed accesses don’t need a transaction
 STMs can heavily optimize isolation barriers

 Better scalability
 No structural false conflicts

 Transactional accesses to the set conflict if and only if they
perform a conflicting operation on the same key

 Atomicity and isolation still managed by the STM
 Optimistic concurrency and invisible readers

 Modular blocking with retry/orElse works

15

Predicating a map

TSet[A]
ConcurrentMap[A,TVar[Boolean]

TMap[K,V]
ConcurrentMap[K,TVar[Option[V]]

univ.get(k).stmRead() == Some(v)
if the current txn context observes k ↦ v

univ.get(k).stmRead() == None
if the current txn context observes k to be absent

16

Trimming the universe

e can be removed when f(e) = 0 and no txns are using e

(reading, writing, or blocked on retry for e’s TVar)

1. Reference counting
 Enter before use, exit on txn completion

 Add bonus when committing f(e) = 1

 Speculatively read f(e), skip entry/exit when bonus is present

2. Soft reference to a throw-away token
 When f(e) = 1, TVar holds a strong reference to the token

 When f(e) = 0, TVar has only a soft reference

 Txn using e keeps a strong reference

 GC of token means all participants agree on absence

17

Performance: low contention

18

non-txn 2 ops/txn 64 ops/txn

80-10-10

0-50-50

get% - put% - remove%

80-10-10 80-10-10

0-50-50 0-50-50

key range of 200K

Performance: high contention

19

non-txn 2 ops/txn 64 ops/txn

80-10-10

0-50-50

get% - put% - remove%

80-10-10 80-10-10

0-50-50 0-50-50

key range of 2K

Conclusion

Transactionally-predicated sets and maps
 Fast when used outside an atomic block

 Full STM integration

 Lower overhead and better scalability than existing
approaches

 Retains the features of the underlying STM
Optimistic concurrency and invisible reads
Opacity
Modular blocking

Thank you

20

Previous methods for
semantic conflict detection

Open nesting
 Carlstrom et al., and Ni et al., both PPoPP’07

 Reduces false conflicts

 Worsens STM overheads

 Transactional boosting
 Herlihy et al., PPoPP’08

 Reduces false conflicts and TM overheads

 Adds non-transactional work to locate associated locks

 Pessimistic visible readers limit concurrency and
scalability

 Boosting voids the forward progress, opacity, and
modular blocking properties of the underlying STM

21

Boosting (Herlihy et al.)

 Start with a thread-safe object
 Implemented without STM

 Associate a lock with each set of non-commutative
operations
 set.op(k1) and set.op(k2) only affect each other if k1 = k2

 So, associate one lock per key

 Set[A] => { s: ConcurrentSet[A];
locks: ConcurrentMap[A,Lock] }

 Transactional access
 Acquire locks(key), then call s.op(key)

 Even if key is not in the set

 Hold lock until the end of the transaction

 Record result of op, apply compensating action on rollback

22

Problems with Txn Boosting

 Scalability + performance
 Pessimistic concurrency means readers cannot overlap writers

 Adds an extra concurrent map lookup to each operation

 Correctness
 Deadlock must be detected and avoided separately

 Functionality
 Not compatible with conditional retry (retry + orElse)

Basically, this is a pessimistic visible-reader STM
implemented using callbacks. It ignores most of the
research into how to build an efficient and scalable
STM!

23

THashSet: An Example

24

begin T1
S.contains(10)
| bitForElem(10)
| | univ.get(10) -> null
| | f = new TVar(false)
| | univ.putIfAbsent(10,f)
| | -> null
| -> f
| f.stmRead() -> false
-> false

// other work in txn

on f

begin T2
S.add(10)
bitForElem(10)
| f = univ.get(10)
-> f
f.stmWrite(true)

commit

Transactional Predication:
Enumeration + Search

 Basic strategy
 Enumerate or search in the underlying map

 Skip entries that are conceptually absent

 Add transactional state that is modified by any structural
insertion that conflicts with the search

 Examples
 Unordered collection: maintain a striped size

 Insertions and removals update their stripe
 Iteration counts entries, checks against the sum of the stripes

 Ordered collection: maintain per-node predecessor and
successor insertion counts
 Insertion counts are incremented non-transactionally when

updating the structure, with recursive helping to avoid races
 Search and enumeration read the insertion counts

25

