
Feedback-Directed Barrier
Optimization in a Strongly

Isolated STM

Nathan Bronson
Christos Kozyrakis

Kunle Olukotun

POPL ’09, 22 Jan 2009

© 2009, Nathan Bronson 1

• Locks – widely used, but…

– Not composable

– Correctness is a whole-program property

• Transactional memory (TM)

– atomic blocks appear to be serialized

– Runtime provides atomicity and isolation

– Enables local correctness reasoning

• Unless atomicity or isolation is not complete

© 2009, Nathan Bronson 2POPL’09 − Feedback Directed Barrier Optimization

Concurrency with Threads: How Is
Shared Mutable State Managed?

• Txn reads and writes replaced by barriers
– Code that implements atomic and isolated access
– One way: eager versioning with optimistic conflict

detection
• Read barrier records version number for later validation
• Write barrier grabs lock and stores old value in an undo log
• Rollback on deadlock or validation failure

• “Isolation barriers” for non-txn access?
No → weak isolation

• Non-txn reads and writes bypass txn illusion

Yes → strong isolation
• Txns are always atomic and isolated

© 2009, Nathan Bronson 3POPL’09 − Feedback Directed Barrier Optimization

Implementing Software TM

Isolation Failure in a
Weakly Isolated STM

// Initially x==0

──────────────────

// Thread 1

atomic {

txnBegin()

txnOpenForRead(x)

txnOpenForWrite(x)

x++;

x++;

txnCommit()

}

──────────────────

// Thread 2

r1 = x;

assert (r1%2 == 0);

© 2009, Nathan Bronson POPL’09 − Feedback Directed Barrier Optimization 4

Strongly Isolated Non-Txn
Access with an Isolation Barrier

// Initially x==0

──────────────────

// Thread 1

atomic {

txnBegin()

txnOpenForRead(x)

txnOpenForWrite(x)

x++;

x++;

txnCommit()

}

──────────────────

// Thread 2

r1 = nonTxnRead(x);

assert (r1%2 == 0);

© 2009, Nathan Bronson POPL’09 − Feedback Directed Barrier Optimization 5

• Weak isolation → fast but unsafe
– Undefined results if any heterogeneous access occurs

• Values from-thin-air
• Catch-fire semantics

– Following the rules is much harder than expected
• Invalid txns may run for a while before rolling back
• Inconsistent txns may execute accesses from impossible branches
• Library and legacy code cannot safely be called from a txn

Minimal performance impact on non-txn code

• Strong isolation → safe but slow
 Easy formal and informal reasoning
– Prohibitively slow

Our goal: strong isolation with good performance
Result: average overhead reduced from 505% to 16%

© 2009, Nathan Bronson 6POPL’09 − Feedback Directed Barrier Optimization

Tradeoffs Between Weak
and Strong Isolation

• One safe pattern is Unmodified-After-
Heterogeneous-Access (UAHA)
– Ignore reads and writes to provably thread-local data

– All txns that write x commit or roll back before first
non-txn access

– Last non-txn write to x finishes before first txn access

• Many simpler properties imply UAHA
– Not-Accessed-In-Txn (NAIT)

– Read-Only (RO)

– Unmodified-After-Txn-Commit (UATC)

© 2009, Nathan Bronson 7POPL’09 − Feedback Directed Barrier Optimization

Safe Access Patterns that
Don’t Need Isolation Barriers

• Hypothesize that a safe access pattern holds for field f

• Replace f’s txn and isolation barriers with “checking
barriers”
– Checking barriers dynamically verify the access pattern

– Checking barriers block if access pattern isn’t followed

– By blocking all threads that would violate our hypothesis,
we make it a self-fulfilling prophecy

• Rescue blocked threads by using hot swap to replace all
of the barriers for f
– Install checking barriers for a new hypothesis if possible

– Revert to full (slow) txn and isolation barriers if necessary

© 2009, Nathan Bronson 8POPL’09 − Feedback Directed Barrier Optimization

Our Approach: Dynamically Verify that
Accesses Follow a Safe Pattern

• General UAHA pattern produces mutual exclusion and happens-
before relationships for accesses to the same instance
– For all accesses a, b to a field of an escaped instance r

(a NONTXNWRITE b TXNOPENFORWRITE)
a NONTXNWRITE b TXNOPENFORREAD a hb b

a TXNWRITECOMPLETED b NONTXNREAD a hb b

– Dynamic check requires synchronization on r’s metadata

• Simpler patterns need less or no synchronization
– For example NAIT just prohibits half of each conflicting pair

a NONTXNREAD a NONTXNWRITE

• Context-sensitivity is much less expensive than state
– Very cheap to record whether an object was created in a txn
– Select among two simpler access patterns, such as NAIT and UATC

• See the paper for 23 hypotheses that allow speedup for our STM

© 2009, Nathan Bronson 9POPL’09 − Feedback Directed Barrier Optimization

Checking Barrier Synchronization Costs

// allowed by NAIT

nonTxnRd$f(ref) { return ref.f; }

nonTxnWr$f(ref, v) { ref.f = v; }

// not allowed by NAIT

txnOpenRd$f(ref) { observed$f |= OBS_TXN_READ;

rollbackAndChangeHypoth(); }

txnOpenWr$f(ref) { observed$f |= OBS_TXN_WRITE;

rollbackAndChangeHypoth(); }

────────────────────────────

• Hypothesis correct → checking barrier is free
• Hypothesis incorrect → still strongly isolated

– Retry txn after all barriers for f have been hot swapped

© 2009, Nathan Bronson 10POPL’09 − Feedback Directed Barrier Optimization

Checking Barriers for the
Not-Accessed-In-Txn Pattern

Strong Isolation Even With
an Incorrect Hypothesis

• Before txn access to x

– NAIT is hypothesized

– Non-txn accesses are fast
while hypothesis still holds

• First access from txn

– Rollback

– Hot swap installs full txn
and isolation barriers

• After

– Non-txn accesses use
isolation barrier

© 2009, Nathan Bronson POPL’09 − Feedback Directed Barrier Optimization 11

• Patterns trade generality for the cost of checking
• Start aggressive

– Assume Not-Accessed-In-Txn
– Hot swap to fix incorrect hypotheses

• Start conservative
– Count isolation barrier invocations
– Hot swap to tighten hypothesis for hot barriers
– Faster than aggressive in our implementation

• Start with hypotheses from the last execution
– Works well, safe even if changes have been made to app

• Minimize the impact of hot swap on other threads
– Two-phase swap blocks only threads that call a changing barrier

© 2009, Nathan Bronson 12POPL’09 − Feedback Directed Barrier Optimization

How Do We Form Hypotheses?

• Run in AJ, a bytecode-rewriting STM in/for Java
– Elapsed time on 2 4-core Xeon with HotSpot™ Server JVM
– Barriers are static methods, hot swap replaces bytecode

• Success: lowered non-txn overheads of strong isolation
– 10 apps from Dacapo, SpecJBB2005
– Strong isolation overhead reduced from 505% to 16%

• Success: accelerated mixed txn benchmark
– Based on SpecJBB2005
– Weakly isolated execution accelerated by 31%
– Strongly isolated execution accelerated by 34%

• See paper for more details and hypothesis prevalence

© 2009, Nathan Bronson 13POPL’09 − Feedback Directed Barrier Optimization

Experimental Validation

• Questions?

© 2009, Nathan Bronson 14POPL’09 − Feedback Directed Barrier Optimization

Thank You

A Privatization Problem in a Weakly
Isolated Java STM

// Thread 1

atomic {

for (item: coll) {

item.x++;

item.y++;

}

→ rollback
}

// Thread 2

atomic {

r1 = coll.removeFirst();

}

r2 = r1.x

r3 = r1.y

assert (r2 == r3);

© 2009, Nathan Bronson POPL’09 − Feedback Directed Barrier Optimization 15

// Initially coll = { {x=0,y=0} }

• Thread 2 may observe .x and .y while rollback is in progress

Example from Menon et al, Transact ‘08

A Publication Problem in a Weakly
Isolated Java STM

// Thread 1

data = 1;

atomic { ready = true; }

// Thread 2

atomic {

r1 = data;

if (ready) val = r1;

}

assert (val != 42);

© 2009, Nathan Bronson POPL’09 − Feedback Directed Barrier Optimization 16

// Initially data = 42, ready = false, val = 0

• Despite race, with locks Java memory model disallows val == 42
• Weakly isolation exposes benign race
• Object-granularity STM can introduce early reads

• All of our OHs imply Unmodified After Heterogeneous Access (UAHA)
– Quite general, but too expensive to check

• Ignore accesses from objects statically proven thread-local
• Stateless optimization hypotheses

– ANY = no acceleration
– RO = Read Only (after escape)
– NAIT = Not Accessed In Txn
– NAOT = Not Accessed Outside Txn

• Stateful optimization hypotheses, set per-field bit on event
– UATC = Unmodified After creating Txn Commit
– UATX = Unmodified After TXn access
– UANT = Unmodified After Non-Txn access

• Compound hypotheses predicated on whether object was created in a txn
– Examples <nt=UATX,tx=ANY>

• For our system, 23 OHs have checking barriers faster than TM’s barriers
– <RO,UATC> and <NAIT,NAIT> have optimal isolation barriers

© 2009, Nathan Bronson 17POPL’09 − Feedback Directed Barrier Optimization

Our Family of Optimization
Hypotheses

• Write barrier replaces all stores inside atomic block
– Lock x
– Log old value,
– Update in-place

• Read barrier replaces all loads inside atomic block
– Verify not locked by another txn
– Record version from x’s metadata
– Read value

• On commit
– Validate all reads by rechecking versions
– Increment versions for written values
– Release all locks

• Rollback on deadlock or validation failure
– Apply undo log
– Releases all locks

© 2009, Nathan Bronson 18POPL’09 − Feedback Directed Barrier Optimization

Software Transactional Memory
(A Typical Eager Versioning Implementation)

• Atomic execution for Java without language extensions
– static void TM.atomic(Runnable task)

• Eager versioning, object granularity, optimistic read set
validation using version numbers

• Java + HotSpot’s sun.misc.Unsafe
• Classes are rewritten during class loading

– Core Java libraries pre-instrumented (to avoid circularity)
– Methods split into txn and non-txn
– Java long added to objects for metadata
– State bits for arrays hidden in the 25 unused header bits on 64-

bit HotSpot, array locks and versions hashed

• Hot swap uses Java’s Instrumentation API
– Barriers are static methods in auto-generated auxiliary classes

© 2009, Nathan Bronson 19POPL’09 − Feedback Directed Barrier Optimization

AJ: A Bytecode-Rewriting STM in Java

• Requirement
– Old and new barrier versions may not execute at the same time

• Goal
– Don’t block code that does not use a changing barrier

• Solution: swap twice
1. Non-txn code periodically copies a global timestamp to a per-

thread field
2. Hot swap installs a blocking “quiescing barrier”
3. Increment the global timestamp
4. Wait until all threads have blocked or copied the new

timestamp value
5. Swap in new barriers
6. Unblock quiesced threads

© 2009, Nathan Bronson 20POPL’09 − Feedback Directed Barrier Optimization

Swapping with Minimal Blocking

