
CudaDMA: Optimizing GPU Memory

Bandwidth via Warp Specialization

Michael Bauer (Stanford) Henry Cook (UC Berkeley)

Brucek Khailany (NVIDIA Research)

1

GPUs Are Ubiquitous

2

 GPUs are in many supercomputers today

 GPUs are great

 High floating point performance

 High memory bandwidth

 Why is programming them so challenging?

 Explicit data movement through memory hierarchy

 Difficult to overlap computation and memory accesses

Outline

 Overview of GPU Architecture

 Motivating Benchmark

 CudaDMA API

 Methodology

 Experiments

 Conclusions

3

GPU Architecture/Programming

Off-Chip DRAM

On-Chip Memory

Shared Memory Shared Memory Shared Memory Shared Memory

Data Data Data Data

CTA CTA CTA CTA SM SM SM SM

4

Warp Definition

 Each CTA is decomposed into warps

 A warp is 32 contiguous threads in the same CTA

 SM performs scheduling at warp-granularity

 Each warp has its own program counter

 All threads in a warp execute in lock-step

 Intra-warp divergence has performance penalty

 Inter-warp divergence has no performance penalty

Warp 0 Warp 1 Warp 2 Warp 3

5

Motivating Benchmark

6

Motivating Benchmark

 Modified SAXPY kernel, staging data through shared

 Variable amount of arithmetic

 Fixed amount of data transferred and number of warps

7 Increasing compute

intensity

GPU Performance Challenges

Memory System Bottlenecks

 Instruction Issue

 Memory Level Parallelism

(MLP)

 Data Access Patterns

 Coalescing

Computational Bottlenecks

 Long-latency memory

accesses

 Synchronization

overheads

 Data Access Patterns

 Control Divergence

Goal: remove entanglement between the bottlenecks

8

GPU Programmability Challenges

 Mismatch CTA size/shape and shared data size/shape

 Leads to thread divergence (lots of ‘if’ statements)

Goal: decouple CTA size/shape from data size/shape

9

Warp Specialization

 Differentiate warps into compute and DMA*

 DMA warps
 Maximize MLP

 Compute warps
 No stalls due to memory

 Producer-consumer synchronization
 Enable better overlapping of compute and memory accesses

 CudaDMA objects to manage warp specialization
 Describe data transfer patterns

 Independent of warp count

10 * D. Merrill and A. Grimshaw. Revisiting Sorting for GPGPU Stream Architectures.

CudaDMA API

11

CudaDMA API

 Declare CudaDMA object

to manage shared buffer

 Separate DMA and

compute warps

 Provide synchronization

primitives

 Perform repeated transfer

operations

class cudaDMA

{

public:

 // Base constructor

 __device__ cudaDMA (

 const int dmaID,

 const int num_dma_threads,

 const int num_comp_threads,

 const int thread_idx_start);

public:

 __device__ bool owns_this_thread();

public:

 // Compute thread sync functions

 __device__ void start_async_dma();

 __device__ void wait_for_dma_finish();

public:

 // DMA thread sync functions

 __device__ void wait_for_dma_start();

 __device__ void finish_async_dma();

public:

 __device__ void execute_dma(

 void *src_ptr, void *dst_ptr);

};

12

CudaDMA Application Structure

 Declare shared buffer at

kernel scope

 Declare CudaDMA

object to manage buffer

 Split DMA warps from

compute warps

 Load buffer using DMA

warps

 Process buffer using

compute warps

 Iterate (optional)

__global__

void cuda_dma_kernel(float *data)

{

 __shared__ float buffer[NUM_ELMTS];

 cudaDMA dma_ld(0,NUM_DMA_THRS,

 NUM_COMPUTE_THRS, NUM_COMPUTE_THRS);

 if (dma_ld.owns_this_thread()) {

 // DMA warps

 for (int i=0; i<NUM_ITERS; i++) {

 dma_ld.wait_for_dma_start();

 dma_ld.execute_dma(data,buffer);

 dma_ld.finish_async_dma();

 }

 }

 else { // Compute warps

 for (int i=0; i<NUM_ITERS; i++) {

 dma_ld.start_async_dma();

 dma_ld.wait_for_dma_finish();

 process_buffer(buffer);

 }

 }

}

13

Execution Model

 Use PTX named barriers

 bar.sync

 bar.arrive

 Available on Fermi

 Fine-grained

synchronization

Compute

Warps

DMA

Warps

Named

Barrier 1

Named

Barrier 2

Named

Barrier 1

Named

Barrier 2

Iteration i

Iteration i+1

wait_for_dma_start

bar.sync

finish_async_dma

bar.arrive

start_async_dma

bar.arrive

wait_for_dma_finish

 bar.sync

14

CudaDMA Methodology

15

Buffering Techniques

 Usually one set of DMA
warps per buffer

 Single-Buffering
 One buffer, one warp group

 Double-Buffering

 Two buffers, two warp groups

 Manual Double-Buffering
 Two buffers, one warp group

16

CudaDMA Instances

 CudaDMASequential

 CudaDMAStrided

 CudaDMAIndirect

 Arbitrary accesses

 CudaDMAHalo

 2D halo regions

 CudaDMACustom

17

Access Patterns

 Explicitly state data loading pattern in code

 Decouple implementation from transfer pattern

 Common patterns implemented by experts

 Used by application programmers

 Optimized for high memory bandwidth at low warp

count

18

Experiments

19

Micro-Benchmarks

 Same modified SAXPY kernel shown earlier

 Fix compute intensity (6 B/FLOP), vary warp count

20

BLAS2: SGEMV

 Dense matrix-vector

multiplication

 CudaDMASequential for

loading vector elements

 CudaDMAStrided for

loading matrix elements

 Varied buffering schemes

 Up to 3.2x speedup

21

3D Finite Difference Stencil

 8th order in space, 1st

order in time computation

 Load 2D slices into

shared for each step in

Z-dimension

 Loading halo cells uses

uncoalesced accesses

 Earlier version of

cudaDMAHalo

Figures from: P. Micikevicius. 3D Finite Difference Computation on GPUs Using CUDA.
22

3D Finite-Difference Stencil

 Use DMA warps
for loading halo
cells as well as
main block cells

 Speedups from
13-15%

 Improvement
from more MLP
and fewer load
instructions

23

27.83

33.14

25.22
24.16

29.1

22.3

0

5

10

15

20

25

30

35

512x512x512 640x640x400 800x800x200

Reference CudaDMA

Execution

Time (s)

Problem Size

Conclusions

 CudaDMA

 Extensible API

 Create specialized DMA Warps

 Works best for moderate compute intensity applications

 Decouple transfer pattern from implementation

 Optimized instances for common patterns

 CudaDMASequential, CudaDMAStrided

 CudaDMAIndirect, CudaDMAHalo

 Speedups on micro-benchmarks and applications

24

25

Download CudaDMA:

http://code.google.com/p/cudadma

Tech Talk at NVIDIA Booth on Thursday

at 1pm

Questions?

Backup Slides

26

Asynchronous DMA Engines

 Decouple transfer implementation from specification

 Asynchronous to overlap computation and memory access

 Ironman abstraction for ZPL (software)

 Sequoia runtime interface (software)

 Cell Broadband Engine (hardware)

 Imagine Stream Processor (hardware)

27

Code Example: SGEMV

 BLAS2: matrix-vector
multiplication

 Two Instances of
CudaDMA objects

 Compute Warps

 Vector DMA Warps

 Matrix DMA Warps

28

Synchronization Points

 Compute Warps

 start_async_dma()

 wait_for_dma_finish()

 DMA Warps

 wait_for_dma_start()

 finish_async_dma()

29

Future Work

 Additional CudaDMA Instances

 Indirect memory accesses

 More applications

 Sparse-Matrix operations

 Target for higher-level language/DSL compilers

 Copperhead, Liszt

 Actual hardware DMA engines for GPUs

 Warp-specialization aware programming models

 Compiler implementations

30

Fast Fourier Transforms

 1D, Power of 2 FFTs

 Compared to optimized
CUFFT library (version
4.0)
 32 warps per SM

 CudaDMA (custom
loader)
 24 warps per SM

 16 compute, 8 DMA

 Same performance at
lower warp count

31

