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GPUs Are Ubiquitous 
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 GPUs are in many supercomputers today 

 

 GPUs are great 

 High floating point performance 

 High memory bandwidth 

 

 Why is programming them so challenging? 

 Explicit data movement through memory hierarchy 

 Difficult to overlap computation and memory accesses 



Outline 

 Overview of GPU Architecture 

 Motivating Benchmark 

 CudaDMA API 

 Methodology 

 Experiments 

 Conclusions 
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GPU Architecture/Programming 

Off-Chip DRAM 

On-Chip Memory 

Shared Memory Shared Memory Shared Memory Shared Memory 

Data Data Data Data 

CTA CTA CTA CTA SM SM SM SM 
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Warp Definition 

 Each CTA is decomposed into warps 

 A warp is 32 contiguous threads in the same CTA 

 

 

 

 

 

 SM performs scheduling at warp-granularity 

 Each warp has its own program counter 

 All threads in a warp execute in lock-step 

 Intra-warp divergence has performance penalty 

 Inter-warp divergence has no performance penalty 

Warp 0 Warp 1 Warp 2 Warp 3 
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Motivating Benchmark 
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Motivating Benchmark 

 Modified SAXPY kernel, staging data through shared 

 Variable amount of arithmetic 

 Fixed amount of data transferred and number of warps 

7 Increasing compute 

intensity 



GPU Performance Challenges 

Memory System Bottlenecks 

 Instruction Issue 

 Memory Level Parallelism 

(MLP) 

 

 Data Access Patterns 

 Coalescing 

Computational Bottlenecks 

 Long-latency memory 

accesses 

 

 Synchronization 

overheads 

 

 Data Access Patterns 

 Control Divergence 

Goal: remove entanglement between the bottlenecks 
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GPU Programmability Challenges 

 Mismatch CTA size/shape and shared data size/shape 

 Leads to thread divergence (lots of ‘if’ statements) 

Goal: decouple CTA size/shape from data size/shape 
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Warp Specialization 

 Differentiate warps into compute and DMA* 

 

 DMA warps 
 Maximize MLP 

 

 Compute warps 
 No stalls due to memory 

 

 Producer-consumer synchronization 
 Enable better overlapping of compute and memory accesses 

 

 CudaDMA objects to manage warp specialization 
 Describe data transfer patterns 

 Independent of warp count 

 
10 * D. Merrill and A. Grimshaw. Revisiting Sorting for GPGPU Stream Architectures. 



CudaDMA  API 
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CudaDMA API 

 Declare CudaDMA object 

to manage shared buffer 

 

 Separate DMA and 

compute warps 

 

 Provide synchronization 

primitives 

 

 Perform repeated transfer 

operations 

class cudaDMA 

{ 

public: 

  // Base constructor 

  __device__ cudaDMA ( 

    const int dmaID, 

    const int num_dma_threads, 

    const int num_comp_threads, 

    const int thread_idx_start); 

public: 

  __device__ bool owns_this_thread(); 

public: 

  // Compute thread sync functions 

  __device__ void start_async_dma(); 

  __device__ void wait_for_dma_finish(); 

public: 

  // DMA thread sync functions 

  __device__ void wait_for_dma_start(); 

  __device__ void finish_async_dma(); 

public: 

  __device__ void execute_dma( 

      void *src_ptr, void *dst_ptr); 

}; 
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CudaDMA Application Structure 

 Declare shared buffer at 

kernel scope 

 Declare CudaDMA 

object to manage buffer 

 Split DMA warps from 

compute warps 

 Load buffer using DMA 

warps 

 Process buffer using 

compute warps 

 Iterate (optional) 

__global__  

void cuda_dma_kernel(float *data) 

{ 

   __shared__ float buffer[NUM_ELMTS]; 

   cudaDMA dma_ld(0,NUM_DMA_THRS, 

     NUM_COMPUTE_THRS, NUM_COMPUTE_THRS); 

 

   if (dma_ld.owns_this_thread()) { 

      // DMA warps 

      for (int i=0; i<NUM_ITERS; i++) { 

        dma_ld.wait_for_dma_start(); 

        dma_ld.execute_dma(data,buffer); 

        dma_ld.finish_async_dma(); 

      } 

   } 

   else { // Compute warps 

      for (int i=0; i<NUM_ITERS; i++) { 

        dma_ld.start_async_dma(); 

        dma_ld.wait_for_dma_finish(); 

        process_buffer(buffer); 

      } 

   } 

} 
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Execution Model 

 Use PTX named barriers 

 bar.sync 

 bar.arrive 

 Available on Fermi 

 

 Fine-grained 

synchronization 

Compute 

Warps 

DMA 

Warps 

Named 

Barrier 1 

Named 

Barrier 2 

Named 

Barrier 1 

Named 

Barrier 2 

Iteration i 

Iteration i+1 

wait_for_dma_start 

bar.sync 

finish_async_dma 

bar.arrive 

start_async_dma 

bar.arrive 

wait_for_dma_finish 

  bar.sync 
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CudaDMA Methodology 

15 



Buffering Techniques 

 Usually one set of DMA 
warps per buffer 

 

 Single-Buffering 
 One buffer, one warp group 

 

 Double-Buffering 

 Two buffers, two warp groups 

 

 Manual Double-Buffering 
 Two buffers, one warp group 
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CudaDMA Instances 

 CudaDMASequential 

 

 CudaDMAStrided 

 

 CudaDMAIndirect 

 Arbitrary accesses 

 

 CudaDMAHalo 

 2D halo regions 

 

 CudaDMACustom 
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Access Patterns 

 Explicitly state data loading pattern in code 

 

 Decouple implementation from transfer pattern 

 

 Common patterns implemented by experts 

 Used by application programmers 

 

 Optimized for high memory bandwidth at low warp 

count 
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Experiments 
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Micro-Benchmarks 

 Same modified SAXPY kernel shown earlier 

 Fix compute intensity (6 B/FLOP), vary warp count 
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BLAS2: SGEMV 

 Dense matrix-vector 

multiplication 

 

 CudaDMASequential for 

loading vector elements 

 

 CudaDMAStrided for 

loading matrix elements 

 

 Varied buffering schemes 

 

 Up to 3.2x speedup 

21 



3D Finite Difference Stencil 

 8th order in space, 1st 

order in time computation 

 

 Load 2D slices into 

shared for each step in 

Z-dimension 

 

 Loading halo cells uses 

uncoalesced accesses 

 Earlier version of 

cudaDMAHalo 

Figures from: P. Micikevicius. 3D Finite Difference Computation on GPUs Using CUDA. 
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3D Finite-Difference Stencil 

 Use DMA warps 
for loading halo 
cells as well as 
main block cells 

 

 Speedups from 
13-15% 

 

 Improvement 
from more MLP 
and fewer load 
instructions 
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Conclusions 

 CudaDMA 

 Extensible API 

 Create specialized DMA Warps 

 Works best for moderate compute intensity applications 

 Decouple transfer pattern from implementation 

 Optimized instances for common patterns 

 CudaDMASequential, CudaDMAStrided 

 CudaDMAIndirect, CudaDMAHalo 

 Speedups on micro-benchmarks and applications 
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Download CudaDMA: 

http://code.google.com/p/cudadma 

 

Tech Talk at NVIDIA Booth on Thursday 

at 1pm 

 

Questions? 



Backup Slides 
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Asynchronous DMA Engines 

 Decouple transfer implementation from specification 

 Asynchronous to overlap computation and memory access 

 

 Ironman abstraction for ZPL (software) 

 

 Sequoia runtime interface (software) 

 

 Cell Broadband Engine (hardware) 

 

 Imagine Stream Processor (hardware) 
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Code Example: SGEMV 

 BLAS2: matrix-vector 
multiplication 

 

 Two Instances of 
CudaDMA objects 

 

 Compute Warps 

 

 Vector DMA Warps 

 

 Matrix DMA Warps 
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Synchronization Points 

 Compute Warps 

 start_async_dma() 

 wait_for_dma_finish() 

 

 DMA Warps 

 wait_for_dma_start() 

 finish_async_dma() 
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Future Work 

 Additional CudaDMA Instances 

 Indirect memory accesses 

 

 More applications 

 Sparse-Matrix operations 

 

 Target for higher-level language/DSL compilers 

 Copperhead, Liszt 

 

 Actual hardware DMA engines for GPUs 

 

 Warp-specialization aware programming models 

 Compiler implementations 
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Fast Fourier Transforms 

 1D, Power of 2 FFTs 

 

 Compared to optimized 
CUFFT library (version 
4.0) 
 32 warps per SM 

 

 CudaDMA (custom 
loader) 
 24 warps per SM 

 16 compute, 8 DMA 

 

 Same performance at 
lower warp count 
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