
On Fast Parallel Detection of
Strongly Connected Components (SCC) in

Small-World Graphs

Sungpack Hong2, Nicole C. Rodia1, and Kunle Olukotun1

1Pervasive Parallelism Laboratory, Stanford University

2Oracle Labs

SC ’13 – November 21, 2013

Outline

 SCC Background and Motivation

 Shortcomings of Existing Algorithm and
Our Solutions

 Experimental Results

2

Strongly Connected Components (SCC)

 In a directed graph, an SCC is a maximally
connected subgraph with a path in both
directions between any two nodes

3

a d c

e
b

f

g

Strongly Connected Components
(SCC) Applications

 Analyze and extract information from graphs
 Characterize graph structure
 Identify core of graph

4

Large Graphs

 Society, Internet, Biology, Communication,
Economy, etc.

5
Source: Facebook Engineering and Facebook 2012 Annual Report

1.2 billion users
150 billion friend
connections

SCC on Large Graphs

 Datasets contain millions to billions of nodes 𝑛
and billions of edges 𝑚

 Fastest sequential algorithms to compute SCC
require 𝑂 𝑛 + 𝑚 work

 SCC on large graphs will take a long time!

6

Parallel SCC Detection

Q: How to make a faster SCC detection algorithm
to compute on large graphs?

A: PARALLELIZE!

7

Existing Algorithms

 Optimal sequential algorithm
 Tarjan’s Algorithm [Tarjan, SIAM 1972]

 Cannot be parallelized effectively due to depth-first
search (DFS)

 Forward-Backward-Trim parallel algorithm
 Recursive application of reachability

[Fleischer et al., IPDPS 2000]

 Trim of trivial SCCs
[McLendon et al., Parallel & Dist. Computing 2005]

8

FW-BW-Trim Algorithm: Reachability

 Node 𝑎 is reachable from node 𝑏 if there is a
path from 𝑏 to 𝑎

a d c

e
b

f

g
b

c a

9

FW-BW-Trim Algorithm: Reachability

 Four partitions
 𝐹𝐹𝐺(𝑖) ∩ BW𝐺(𝑖) [SCC]
 𝐹𝐹𝐺(𝑖) ∖ 𝐵𝐹𝐺(𝑖)
 𝐵𝐹𝐺 𝑖 ∖ 𝐹𝐹𝐺(𝑖)
 𝑉 ∖ 𝐹𝐹𝐺 𝑖 ∪ 𝐵𝐹𝐺 𝑖

 Additional SCCs must
be completely contained
within one of the three
additional partitions

Graph G

Pivot u

BWG(u)

FWG(u)

SCCG(u)

10

Graph G

Pivot u

BWG(u)

FWG(u)

SCCG(u)

FW-BW-Trim Algorithm: Reachable Set
Recursion

 Recursively apply the
algorithm to each of the
three partitions created
besides the pivot’s SCC

 Utilizes task
parallelism

11

FW-BW-Trim Algorithm: Trimming

 Can identify trivial SCCs (size 1) by looking only
at the number of neighbors
 If the node has in-degree=0 or out-degree=0, it is a

size 1 SCC

 Repeat iteratively

 Implement in parallel
on disconnected nodes

12

a
b c

d e

FW-BW-Trim Algorithm

13

Apply
iterative Trim

step

Recursively apply
algorithm to each

partition

Calculate
forward &

backward sets

New SCC is
intersection
of FW & BW

sets

Choose ANY
node in the

graph

Outline

 SCC Background and Motivation

 Shortcomings of Existing Algorithm and
Our Solutions

 Experimental Results

14

Real-World Graphs and the
Small-World Property

 Social networks, web graphs, citation networks
 Relevant properties

 Small-world property (small diameter)
 Giant SCC size 𝑂(𝑁)
 Skewed SCC size distribution

 Small SCCs are more frequent than large SCCs

15

Example Small-World Graph:
LiveJournal

 N = 4,848,571; M = 68,993,773
 Estimated diameter = 18
 Largest SCC size = 3,828,682 (79% of all nodes)

16

Shortcomings of the FW-BW-Trim
Algorithm

 High probability that we initially pick a pivot
node in the giant SCC

 Giant SCC is likely identified at the beginning by
a single thread

 Other threads idle because no other tasks yet

 Workload imbalance
 Insufficient parallelism

17

Our Algorithm Extensions
Method 1: Two-Phase Parallelization

 Adds data parallelism
 All threads work on the same partition of the graph

to find reachable sets

 Implement with parallel breadth-first search (BFS)

18

The
Giant
SCC

BW

FW

Method 1: Two-Phase Parallelization

FW-BW-Trim(G):
// Data parallel
Trim(G)

// Task parallel
Recur-FWBW(G)

Method1(G):
// Data parallel
Trim(G)
Par-FWBW(G)
Trim(G)
// Task parallel
Recur-FWBW(G)

19

Shortcomings of Method 1

 Insufficient tasks in the task parallel recursive
FW-BW step

20

Mostly disconnected
SCCs

Par-FWBW
The

Giant
SCC

BW

FW

BW

FW

 Now each WCC is a separate parallel task
 Significantly increases parallelism in recursive

FWBW step

Method 2: Weakly Connected
Components (WCC)

21

Identify WCCs

BW

FW

Method 2: Weakly Connected
Components (WCC)

 In a directed graph, a WCC is a maximally
connected subgraph with a path in one direction
between any two nodes

a d c

e
b

f

g

22

Method 2: Trim2

 Parallel detection of a subset of size 2 SCCs
 Tight loop between nodes A and B
 No other outgoing (or incoming) edges from A and B

 Apply only once rather than iteratively
 Higher computational cost than Trim

 Reduces execution time of WCC step by up to 50%
23

A B A B

Method 2: WCC + Trim2

Method1(G):
// Data parallel
Trim(G)
Par-FWBW(G)
Trim(G)

// Task parallel
Recur-FWBW(G)

24

Method2(G):
// Data parallel
Trim(G)
Par-FWBW(G)
Trim’(G)
Par-WCC(G)
// Task parallel
Recur-FWBW(G)

Trim(G)
Trim2(G)
Trim(G)

Outline

 SCC Background and Motivation

 Shortcomings of Existing Algorithm and
Our Solutions

 Experimental Results

25

Experimental Datasets
 Online social networks

 Flickr
 Friendster*
 Twitter
 Orkut*

 Web link networks
 LiveJournal
 Baidu
 Wikipedia

 Citation
 US Patents

 Non small-world
 CA-road*

*the original graph is undirected; we randomly assign a direction for each edge with 50% probability for
each direction 26

Experimental Setup

 Commodity server
 2 Intel Xeon E5-2660 (2.20GHz) CPUs
 Total of 16 cores and 32 hardware threads
 Total of 20 MB of last-level cache and 256 GB of

main memory

 OpenMP threading library

27

Algorithm Recap
Method1(G):
// Data parallel
Trim(G)
Par-FWBW(G)
Trim(G)

// Task parallel
Recur-FWBW(G)

28

Method2(G):
// Data parallel
Trim(G)
Par-FWBW(G)
Trim’(G)
Par-WCC(G)
// Task parallel
Recur-FWBW(G)

FW-BW-Trim(G):
// Data parallel
Trim(G)

// Task parallel
Recur-FWBW(G)

Parallel Speedup Results vs. Tarjan’s Alg.

29

LiveJournal Flickr Baidu

Wikipedia Friendster Twitter

Orkut Patents CA-road

Parallel Speedup Results

30

LiveJournal Flickr Baidu

Wikipedia Friendster Twitter

Orkut Patents CA-road

v

Method 2 = Method 1
Results: Friendster

31

Method 2 = Method 1
Results: Friendster

32

Method 2 > Method 1
Results: LiveJournal

33

Method 2 > Method 1
Results: LiveJournal

34

Tarjan > Methods 1&2
Results: CA-road

35

Tarjan > Methods 1&2
Results: CA-road

36

Conclusions

 We extend the FW-BW-Trim parallel SCC
detection algorithm by taking advantage of
small-world graph properties

 Result: Significant parallel speedup on
small-world graphs
 Speedup from 5x to 29.4x
 Mean speedup 14x

37

Questions?

Thank you

Questions: nrodia@stanford.edu

Code available from: www.stanford.edu/~nrodia

38

	On Fast Parallel Detection of �Strongly Connected Components (SCC) in Small-World Graphs
	Outline
	Strongly Connected Components (SCC)
	Strongly Connected Components (SCC) Applications
	Large Graphs
	SCC on Large Graphs
	Parallel SCC Detection
	Existing Algorithms
	FW-BW-Trim Algorithm: Reachability
	FW-BW-Trim Algorithm: Reachability
	FW-BW-Trim Algorithm: Reachable Set Recursion
	FW-BW-Trim Algorithm: Trimming
	FW-BW-Trim Algorithm
	Outline
	Real-World Graphs and the �Small-World Property
	Example Small-World Graph: LiveJournal
	Shortcomings of the FW-BW-Trim Algorithm
	Our Algorithm Extensions�Method 1: Two-Phase Parallelization
	Method 1: Two-Phase Parallelization
	Shortcomings of Method 1
	Method 2: Weakly Connected Components (WCC)
	Method 2: Weakly Connected Components (WCC)
	Method 2: Trim2
	Method 2: WCC + Trim2
	Outline
	Experimental Datasets
	Experimental Setup
	Algorithm Recap
	Parallel Speedup Results vs. Tarjan’s Alg.
	Parallel Speedup Results
	Method 2 = Method 1�Results: Friendster
	Method 2 = Method 1�Results: Friendster
	Method 2 > Method 1�Results: LiveJournal
	Method 2 > Method 1�Results: LiveJournal
	Tarjan > Methods 1&2�Results: CA-road
	Tarjan > Methods 1&2�Results: CA-road
	Conclusions
	Questions?
	Slide Number 39
	Backup Slides
	Previous Work
	Execution Time Breakdown
	Phase of SCC Identification Breakdown
	Baseline Algorithm: Parallel Trim
	Our Algorithm Extensions
	Potential Questions & Answers
	Potential Questions & Answers

