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Abstract. We propose the algorithms for performing multiway joins
using a new type of coarse grain reconfigurable hardware accelerator –
“Plasticine” – that, compared with other accelerators, emphasizes high
compute capability and high on-chip communication bandwidth. Joining
three or more relations in a single step, i.e. multiway join, is efficient when
the join of any two relations yields too large an intermediate relation. We
show at least 100x speedup for a sequence of binary hash joins execution
on Plasticine over CPU. We further show that in some realistic cases,
a Plasticine-like accelerator can make 3-way joins more efficient than a
cascade of binary hash joins on the same hardware, by a factor of up to
45X.

1 Motivation

Database joins involving more than two relations are at the core of many modern
analytics applications. Examples 1 and 2 demonstrate two scenarios that require
different types of joins involving three relations.

Example 1. (Linear 3-way join) Consider queries involving the Facebook “friends”
relation F . One possible query asks for a count of the “friends of friends of
friends” for each of the Facebook subscribers, perhaps to find people with a lot
of influence over others. There are approximately two billion Facebook users,
each with an average of 300 friends, so F has approximately 6 × 1011 tuples.
Joining F with itself will result in a relation with approximately 1.8× 1014 tu-
ples.3 However, the output relation only involves 2 billion tuples, or 1/90000th as
much data.4 Thus, a three-way join of three copies of F might be more efficient,

3 Technically, there will be duplicates, because if x is a friend of a friend of y, then there
will usually be more than one friend that is common to x and y. But eliminating
duplicates is itself an expensive operation. We assume duplicates are not eliminated.

4 There is a technical difficulty with answering this query using parallel processing:
we must take the union of large, overlapping sets, each produced at one processor.
We cannot avoid this union if we are to get an exact count of the number of friends
of friends of friends. However, we can get an asymptotically correct approximation
to the size of the union using a very small amount of data to represent each set. One
method to do so is the algorithm of Flajolet-Martin [7] [16].
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if we can limit the cost of the input data replication as we execute the three-way
join.

Example 2. (Cyclic 3-way join) Consider the problem of finding triangles in re-
lation F . That is, we are looking for triples of people who are mutual friends.
The density of triangles in a community might be used to estimate its maturity
or its cohesiveness. There will be many fewer triangles than there are tuples in
the join of F with itself, so the output relation will be much smaller than the
intermediate binary joins.

Afrati and Ullman [3] showed that in some cases, a multiway join can be more
efficient than a cascade of binary joins, when implemented using MapReduce.
But multiway joins are superior only when the intermediate products (joins of
any two relations) are large compared to the required replication of the input
data at parallel workers, and the output is relatively small; that is the case in
each of the Examples 1 and 2. The limitation on the efficiency of any parallel
algorithm for multiway joins is the degree to which data must be replicated at
different processors and the available computing capacity. The performance ben-
efits of multiway joins over cascaded binary joins could be perceived on hardware
architectures facilitating cheap data replication.

Spatially reconfigurable architectures [24], such as Coarse-grained reconfig-
urable architecture (CGRA), have gained traction in recent years as high-throughput,
low-latency, and energy-efficient accelerators. With static configuration and ex-
plicitly managed scratchpads, reconfigurable accelerators dramatically reduce
energy and performance overhead introduced by dynamic instruction scheduling
and cache hierarchy in CPUs and GPUs. In contrast to field-programmable gate
arrays (FPGAs), CGRAs are reconfigurable at word or higher-level as opposed
to bit-level. The decrease in flexibility in CGRA reduces routing overhead and
improves clock frequency, compute density, and energy-efficiency compared to
FPGAs.

Plasticine [20] is a recently proposed tile-based CGRA accelerator. As shown
in Fig 1, Plasticine has a checkerboard layout of compute and memory units
connected with high bandwidth on-chip network. Plasticine-like architectures
offer several advantages to enable efficient multiway join acceleration. First, it
has peak 12.3 FLOPS throughput designed for compute-intensive applications,
like multiway join. Second, the high-bandwidth static network can efficiently
broadcast data to multiple destinations, which makes replication very efficient.

1.1 Contributions

In this paper, we study algorithms to efficiently perform multiway joins on
Plasticine-like accelerator. We show an advantage of such accelerators over CPU-
based implementation on a sequence of binary hash joins, and additional perfor-
mance improvement with 3-way joins over cascaded binary joins. Although we
describe the algorithms with Plasticine as a potential target, the algorithms can
also be mapped onto other reconfigurable hardware like FPGAs by overlaying
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Fig. 1. Plasticine-like coarse grain reconfigurable hardware accelerator.

Plasticine structure on top of the substrate architecture. The contributions of
the paper are summarized below.

– Algorithms and efficient implementations for both linear and cyclic 3-way
join operations for Plasticine-like accelerators. These algorithms are signifi-
cantly different from the algorithms of [3] for the MapReduce implementation
of the same joins.

– Analysis of the cost of running these algorithms in terms of the number of
tuples that are read onto an accelerator chip.

– Performance comparison of a sequence of binary hash-join implementation
on a Plasticine-like accelerator to state-of-the-art CPU hash-join on Post-
gres [21].

– Evaluation of the 3-way join algorithms compared to the cascaded binary
hash-join implementation on the same accelerator.

1.2 Simplifying Assumptions

In our analyses, we shall assume a uniform distribution of join-key values. This
assumption is unrealistic because there is typically skew, where some values
appear more frequently than others. Small amounts of skew can be handled
by leaving some components of the accelerator chip to handle “overflow” of
other components. However, large amounts of skew require a modification to the
algorithms along the lines of [19], which we do not cover in detail due to space
limitation.

The rest of this paper is organized as follows: Section 2 presents some back-
ground and related work. Sections 3 discuss the challenges for multiway join al-
gorithm implementation on Plasticine-like accelerator. Sections 4 and 5 present
our algorithms for linear and cyclic multiway joins respectively. Section 6 com-
pare the performance results of a sequence of binary hash joins on Plasticine-like
accelerator and CPU. Further, we also compare the performance of the acceler-
ated multiway join algorithms to an accelerated sequence of binary join approach
on Plasticine-like accelerator. Finally the paper concludes with the future work
in Section 7.
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2 Background And Related Work

This section provides a brief background and reviews relevant related work on
multiway join algorithms, hash-join acceleration, and spatially reconfigurable
architectures.

2.1 Multiway joins

Efficient join algorithms are usually based on hashing [4]. Parallelism can be
exploited by the parallel processing of a tree of several binary joins [17], an
approach that is unsuitable for joins generating large intermediate relations, as
is the case for our two introductory examples. The focus of such approaches has
been to find optimal plans for parallel execution of binary joins. Henderson et
al. [12] presented a performance comparison of different types of multiway-join
structures to two-way (binary) join algorithm.

A leapfrog approach [23] has been used to join multiple relations simulta-
neously by parallel scanning of the relations that are sorted on the join key.
Aberger et al. [2] have accelerated the performance of leapfrog triejoin using
SIMD set intersections on CPU-based systems. The algorithm is sequential on
the number of join keys and requires the relations to be preprocessed into trie
data structures.

2.2 Hash-Join Acceleration

A hash-join algorithm on large relations involves three key operations - parti-
tioning of relations, hashing of the smaller relation into a memory (build phase)
followed by the probing of the second relation in the memory. Kara et al. [14]
present an efficient algorithm for partitioning relations using FPGA-based accel-
erator. Onur et al. [15] use on-chip accelerator for hash index lookup (probing)
to process multiple keys in parallel on a set of programmable ’walker’ units for
hashing. Robert et al. [11, 10] use FPGA for parallelizing hashing and collision
resolution in the building phase. Huang et al. [13] have explored the use of open
coherent accelerator processor interface (OpenCAPI)-attached FPGA to acceler-
ate 3-way multiway joins where the intermediate join of two relations is pipelined
with a partition phase and join with the third relation.

2.3 Spatially Reconfigurable Architectures

Spatially reconfigurable architectures are composed of reconfigurable compute
and memory blocks that are connected to each other using a programmable in-
terconnect. Such architectures are a promising compute substrate to perform
hardware acceleration, as they avoid the overheads in conventional processor
pipelines, while retaining the flexibility. Recent work has shown that some spa-
tially reconfigurable architectures achieve superior performance and energy effi-
ciency benefits over fine-grained alternatives such as FPGAs and conventional
CPUs [20].
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Several spatially reconfigurable architectures have been proposed in the past
for various domains. Architectures such as Dyser [9] and Garp [5] are tightly
coupled with a general purpose CPU. Others such as Piperench [8], Tartan [18],
and Plasticine [20] are more hierarchical with coarser-grained building blocks.
Plasticine-like accelerator is not limited to databases alone but can efficiently
accelerate multiway joins. Q100 [26] and Linqits [6] are accelerators specific to
databases.

3 Accelerating Multiway Joins

We present algorithms for accelerating both linear (R(AB) ./ S(BC) ./ T (CD))
and cyclic (R(AB) ./ S(BC) ./ T (CA)) multiway joins on a Plasticine-like
accelerator using hashing. There may be other attributes of relations R, S, and
T . These may be assumed to be carried along as we join tuples, but do not affect
the algorithms. Also, A, B, C, and D can each represent several columns of the
relations and by symmetry, assume that |R| ≤ |T |.

A naive approach to map the Afrati et al. [3] algorithm on Plasticine-like
architecture will be bottlenecked by DRAM bandwidth and limited by the size
of on-chip memory. The proposed multiway hash-join algorithms exploit the
pipeline and parallelism benefits in a Plasticine-like architecture to improve the
performance while eliminating the limitations mentioned above.

We partition one or more relations using hash functions, one for each of the
columns used for joining, such that the size of potentially matching partitions of
the three relations is less than or equal to the size of on-chip memory. The loading
of a partition of a relation from DRAM to on-chip memory is pipelined with the
processing of the previously loaded partition(s) on the accelerator. Further, to
squeeze more processing within the given on-chip memory budget, at least one
of the relations is streamed, unlike batch processing in Afrati et al.[3].

3.1 Notations

In what follows, we use |R| to represent the number of records of a relation R.
A relation R(AB)’s tuple is represented as r(a, b) and the column B’s values
is accessed as r.b. We use the name of hash functions–h, g, f , G, and H (or
hbkt, gbkt, fbkt, Gbkt, and Hbkt) in certain equations to stand for the number of
buckets produced by those functions. U is the number of distributed memory
and compute units, and we assume there is an equal number of each. M is the
total on-chip memory capacity.

4 Linear 3-Way Join

For the linear, three-way join R(AB) ./ S(BC) ./ T (CD), we partition the
relations at two levels in a particular way, using hash functions as shown in Fig 2.
The relations are partitioned using robust hash functions [25] on the columns
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involved in the join, which, given our no-skew assumption, assures uniform sizes
for all partitions. We can first configure the accelerator to perform the needed
partitioning. Since all hash-join algorithms require a similar partitioning, we
shall not go into details regarding the implementation of this step.

Fig. 2. Partitioning of Relation R and S. Relation R is partitioned using radix hashing
on the first digit, H(B), to create subpartitions R1, R2, and R3. Each Ri is further
partitioned using radix hashing, h(B), on the second digit of B. S is partitioned using
radix hashing similar to R, on both the B and C columns.

The relations R and T are similar, each having one join column, while relation
S has two columns to join with relations R and T . The relative sizes of the
three relations affect our choice of algorithm. The largest relation should be
streamed to the accelerator to optimize the on-chip memory budget. When S
is largest, relations R and T must either be small enough to fit on the on-chip
memory (discussed in detail as a “star” 3-way join in Section 6) or they should
be partitioned, based on the values of attributes B or C, respectively, each of
them having L sub-partitions. Then each pair of sub-partitions is loaded on to
the accelerator iteratively and matched with the corresponding one of the L2

partition of the streamed relation S. In the case of larger R and T relations,
one of them is streamed and the other one is partitioned as discussed in detail
below.

4.1 Joining Relations on Plasticine-like Accelerator

Consider the case where S is no larger than R or T . For the first level partitioning
of the relations R and S on attribute B, we choose a number of partitions for
the hash function H(B) so that a single partition of R (that is, the set of tuples
of R whose B-value hashes to that partition) will fit comfortably in one pattern
memory unit (PMU) of the Plasticine. The second level of partitioning serves two
purposes and involves two hash functions. First, we use hash function h(B) to
divide a single partition of R and S into U buckets each, one bucket per PMU.
We use hash function g(C) to divide C into a very large number of buckets.
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Algorithm 1: Pseudo-code for R(AB) ./ S(BC) ./ T (CD)

Data: Relations R(A,B), S(B,C) and T(C, D). Memory grid, MemGrid[], on
accelerator. Column B values hashed using H() and h(), and Column C
hashed using g(). #Rpart denotes the number of partitions of relation
R

Result: Tuples from R, S and T joined on common values of B and C.
1 Ti ← Partition T(C,D) using hash function g(C) [#Tpart];
2 Sij ← Partition S(B,C) using hash function H(B) and g(C) (Sij partitions are

ordered first on H(B) and then on g(C) within each Si partition, [#Sipart]) ;
3 Ri ← Partition R(A,B)using hash function H(B) [#Rpart];
4 for Each partition Ri=H(B) of R till #Rpart do
5 for All records of Ri do
6 hb ← h(ri.b);
7 MemGrid[hb]← ri(∗, b);
8 end
9 for Each partition Si=H(B) of S till #Spart do

10 for Each partition Sij=g(C) till #Sipart do
11 for All records of Sij do
12 hb ← h(sij .b);
13 MemGrid[hb]← sij(b, c);

14 end
15 MemGrid[∗]← tj(c, ∗) [broadcast or send to all Memory units

where Sij was sent];
16 Join tuple from Ri, Sij and Tj ;
17 Discard tuples from Sij and Tj ;

18 end

19 end
20 Discard tuples of Ri

21 end
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Each partition of S is further partitioned into sub-partitions that correspond to
a single value of g(C). Each g(C) bucket of S’s partition may be organized by
increasing values of h(B) as shown in Fig 2. Likewise, the entire relation T is
divided into buckets based on the value of g(C).

We shall describe what happens when we join a single partition of R, that
is, the set of tuples of R whose B-values have a fixed value H(B) = i, with the
corresponding partition of S (the set of tuples of S whose B-values also have
H(B) = i. Call these partitions Ri and Si, respectively.

1. Bring the entire partition of R onto the chip, storing each tuple r(a, b) in
the PMU for h(b).

2. For each bucket of g(C), bring each tuple s(b, c) from that bucket from Si

onto the chip and store it in the PMU for h(b).
3. Once the bucket from Si has been read onto the chip, read the corresponding

bucket of T – t(c, d) with the same hash value g(C) – onto the chip. Since
tuple t(c, d) can join with tuple r(a, b) and s(b, c) having any value of B, we
must route each t(c, d) tuple to every PMU.

4. Once the buckets with a given value g(C) have arrived, PCUs joins the three
tiny relations at each PMU using optimized cascaded binary joins. Recall we
assume the result of this join is small because some aggregation of the result
is done, as discussed in Example 1. Thus, the amount of memory needed to
compute the join at a single memory is small.5

The formal representation of the algorithm is presented in Algorithm 1.

4.2 Analysis of the Linear 3-way Join

Each tuple of R and S is read onto an accelerator chip exactly once. However,
tuples of T are read many times – once for each partition of R. The number
of partitions produced by the hash function H(B) is such that one partition of
R fits onto the entire on-chip memory with capacity M . Thus, the number of

partitions into which R is partitioned is |R|M . Therefore, the number of reads for

tuples of T is |R||T |M . This function is symmetric in R and T , so it seems not to
matter whether R is the smaller or larger of the two relations. However, we also
have to read R once, so we would prefer that R be the smaller of R and T . That

is, the total number of tuples read is |R|+ |S|+ |R||T |
M .

5 For just one example, if R, S, and T are each the friends relation F , and we are
using the Flajolet-Martin algorithm to estimate the number of friends of friends of
friends for each individual A in the relation R, then the amount of data that needs
to be maintained in memory would be on the order of 100 bytes for each tuple in the
partition Ri, and thus would not be more than proportional to the size of the data
that was read into the memory from outside. In fact, although we do not want to
get into the details of the Flajolet-Martin algorithm [16], if we are willing to assume
that everyone has at least some small number of friends of friends of friends, e.g., at
least 256, then we can reduce the needed space per tuple to almost nothing.
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Thus, the number of tuples read onto the chip is greater than the sizes of
the three relations being joined. However, using a cascade of two-way joins may
also involve an intermediate relation whose size is much bigger than the sizes of
the input relations. Thus, while we cannot be certain that the three-way join is
more efficient than the conventional pair of two-way joins, it is at least possible
that the algorithm proposed will be more efficient.

Example 3. Consider again the problem of getting an approximate count of
the friends of friends of friends of each Facebook user, as was introduced in
Example 1. We estimated the number of tuples in the friends relation F as
6 × 1011. This value is thus the sizes of each of R, S, and T . If we take the
three-way join, then the number of tuples read onto an accelerator chip is
6× 1011 + 6× 1011 + 3.6× 1023/M . In comparison, if we use two two-way joins,
then we need to output first the join of F with itself, which involves producing
about 1.8 × 1014 tuples, and then reading these tuples back in again when we
join their relation with the third relation. The three-way join will involve reading
fewer tuples if 6×1011 + 6×1011 + 3.6×1023/M < 3.6×1014. That relationship
will hold if M > 1.003× 109. That number is far more than can be expected on
a single chip with today’s technologies, even assuming that a tuple is only eight
bytes (two 4-byte integers representing a pair of user ID’s). However, for some-
what smaller databases, e.g., the 300 million Twitter users and their followers,
the on-chip memory requirements are feasible, in that case, the chip needs to
hold approximately 150 million tuples.6

5 Cyclic 3-Way Join

Consider the cyclic three-way join R(AB) ./ S(BC) ./ T (CA). The cyclic join is
symmetric in all three relations. We shall therefore assume that R is the smallest
of the three, for reasons we shall see shortly. Similar to the linear three-way join,
we shall partition R such that it’s one partition fits conveniently into on-chip
memory. However, in this case, since both A and B are shared by other relations,
we will partition R using hash functions H(A) and G(B) into H, and G buckets,
respectively. The correct values of H and G are to be determined by considering

the relative sizes of the three relations. However, we do know that |R|HG = M .
In addition to partitioning R into HG pieces, each of size M , we use H(A) to

partition T into H pieces, each of size |T |H , and we use G(B) to partition S into

G pieces, each of size |S|G . The partitioning scheme is depicted in Fig 3.
As before, we are assuming that there is no significant skew in the distribu-

tion of values in any column, and we also are assuming a sufficient number of
different values that hashing will divide the relations approximately evenly. In
what follows, we shall only describe the join of a single partition from each of R,

6 In fact, as a general rule, we can observe that the minimum memory size M needed
for any social-network graph is very close to half the number of nodes in the graph,
regardless of the average degree of the graph (number of friends per user) and size
of the relation.
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Fig. 3. Partitioning of Relation R, S and T . Relation R is partitioned using radix
hashing on the first digit of column A and B using H(A), G(B) respectively. Each
Ri is further partitioned using radix hashing, h(A), g(B), on the second digit of A,B.
Similarly, S and T are partitioned using radix hashing on B and A columns respectively.
Column C is hashed using f(C).

S, and T . These three partitions are determined by buckets of H and G. That is,
for a fixed value of H(A) = i and a fixed value of G(B) = j, we join those tuples
r(a, b) of R such that H(a) = i and G(b) = j with the tuples s(b, c) of S such
that G(b) = j and the tuples t(c, a) of T such that H(a) = i. In what follows, we
shall refer to these partitions as R′, S′, and T ′, respectively. Each set of three
partitions is handled the same way, either sequentially on one accelerator chip
or in parallel on more than one such chip.

5.1 Joining Relations on Plasticine-like Accelerator

Now, let us focus on joining R′, S′, and T ′. Assuming the chip has U memories
arranged in a square

√
U on a side, we shall use lower-level hash functions h(A),

g(B), and f(C). Hash functions h and g each map to
√
U buckets, while f maps

to a very large number of buckets – a sufficient number of buckets so that S′

and T ′ can be partitioned on the basis of their C-values into pieces that are
sufficiently small that we can neglect the memory space needed to store one
piece from one of these two relations.

Begin the join by bringing onto the chip all the tuples r′(a, b) of R′. Each of
these tuples is routed to only one of the U PMUs – the PMU in row h(a) and
column g(b). Then we bring onto the chip each of the tuples s′(b, c) of S′ that
have f(c) = k. These tuples are each stored in every PMU in the column g(b).
Thus, this tuple will meet at one of these memories, all the tuples of R′ that
share the same hash value g(B). Finally, we pipe in the tuples t′(c, a) of T ′ that
have f(c) = k. Each of these tuples is read into each of the memories in row
h(a), where it is joined with the possibly matching tuples r′(a, b) and s′(b, c).
Any matches are sent to the output of the chip.

5.2 Analysis of Cyclic Three-Way Join

Notice first that every top-level partition of R is read onto the chip only once.
However, a top-level partition of S is read onto chip H times, once for each
bucket of H(A). Also, every top-level partition of T is read G times, once for
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each bucket of G(B). The total number of tuples read onto an accelerator chip

is thus |R|+ H|S|+ G|T |. Recall also that GH = |R|
M , so previous function can

be expressed as |R|+H|S|+ |R||T |
MH . To minimize this function, set its derivative

with respect to H to 0, which gives us H =
√
|R||T |
M |S| . For this value of H, the cost

function becomes |R|+ 2
√
|R||S||T |

M . Notice that the second term is independent

of the relative sizes of the three relations, but the first term, |R|, tells us that
the total number of tuples read is minimized when we pick R to be the smallest
of the three relations.

Example 4. Suppose each of the three relations is the Facebook friends relation
F ; that is, |R| = |S| = |T | = 6×1011. Then the total number of tuples read onto
the chip is 6× 1011(1 +

√
6× 1011/M). If we assume as in Example 3 that the

binary join of F with itself has about 0.8×1014 tuples, we can conclude that the
total number of tuples read by the three-way join of F with itself is less than
the number of tuples produced in the intermediate product of two copies of a

cascade of two-way joins as long as 6 × 1011(1 +
√

6×1011
U ) < 1.8 × 1014. This

condition is satisfied for M as small as seven million tuples.

6 Performance Evaluation

In this section, we evaluate the algorithms proposed in the Sections 4, on Plasticine-
like accelerator using a performance model. First, we show the advantage of ac-
celerating a sequence of binary join operators by comparing its execution time on
Postgres database on CPU to our simulation on the accelerator. Next, we show
additional performance improvement of 3-way join (an instance of multiway join)
over a cascade of two binary hash joins on the acccelerator.

We consider two categories of multiway joins in this evaluation: self-join7 of
a big relation of size N , where N does not fit on-chip; and star-join8 of two small
relations (R and T ) each of size K with a large relation, S, of size N , where
N >> K and 2K <= M . The self join algorithm described in Section 4 is a
generic algorithm for any linear join, whereas the algorithm used for star join
is a variant of the generic algorithm that specialize for better locality when the
dimension relations fit on the on-chip memory.

For a given set of relations, we observe that the proposed algorithms execu-
tion time on the accelerator is sensitive to the number of buckets and DRAM
bandwidth. We first evaluate the selection of hyperparameters of the algorithms,
i.e. bucket size for the cascaded binary and 3-way joins. With best bucket sizes,
we compare the performance advantage of 3-way join over a cascade of binary

7 Self 3-way join is joining of a relation with two instances of itself e.g. Friends of
friends.

8 Star 3-way join is joining of a large fact relation with two small dimension relations
e.g. TPCH [1] benchmark having join of lineitem fact relation with order and supplier
dimension relations.
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joins for different selectivity of join columns and DRAM-bandwidths. For all
experiments, we do not materialize the final output of the join in memory (refer
Example 1). Instead, we assume the final results will be aggregated on the fly.
Therefore, in our study, we only materialize the intermediate result of the first
binary join, and the final output is immediately aggregated (e.g. perform count
operation on the number of friends of friends relation).

6.1 Target Systems

The CPU system, used for performance evaluation of cascaded binary join, is
Intel Xeon Processor E7-8890 v3 with 143 processors and 1TB of DDR4 RAM
with 85GB/s memory bandwidth. For performance evalutaion on hardware ac-
celerator, we use performance model for the Plasticine-like architecture. It has
DDR3 DRAM technology with 49GB/s read and write bandwidth , Number of
PMUs(PCUs), U = 64 and a peak of 12.3 TFLOPS compute throughput with
16MB on-chip scratchpad.

6.2 Accelerator’s Performance Model

The performance model is built by simulating the logic of the proposed algorithm
on the hardware specification of the accelerator given in Section 6.1. We observed
that the performance advantage of the proposed 3-way join over cascaded binary
join depends on the number of records in the joining relations and the selectivity
of the join column - lower selectivity (i.e. higher duplicates) favors multiway
join. The performance model needs two inputs for simulation - the number of
records of R, S and T and the maximum distinct values over all joining columns
(represented as d).

The performance model accounts for how an application is spatially paral-
lelized and data is streamed across compute and memory units of the accelerator.
The model does considers DRAM-contention while loading multiple data streams
concurrently on the chip. For higher DRAM bandwidth utilization and to hide
the DRAM latency, we overlap execution of the algorithm with prefetching of the
data. This requires to split the on-chip memory into two buffers (double buffer-
ing) to store both the current and prefetched data. The performance model uses
only half of the on-chip memory to include this optimization.

For cascaded binary join, once the intermediate result does not fit in DRAM,
the performance model simulates the flushing of the intermediate data to the un-
derlying persistent storage with much lower bandwidth (around 700MB/s from
the latest SSD technology). Appendix A explains the performance model in de-
tail.

6.3 Performance Analysis of Cascaded Binary Join

A cascaded binary-join is a sequence of two binary joins- the first join is R(AB) ./
S(BC) which outputs intermediate relation I(ABC) and second join is I(ABC) ./
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T (CD). For uniform distribution, the intermediate size for a cascaded binary join

is |I| = |R ./ S| ≤ |R||S|d [22].

Both the joins are executed on the accelerator similar to the 3-way join
discussed in Section 4. The first join R(AB) ./ S(BC) involves loading and
matching of partitions of R and S using H(B), h(B) on the chip. The interme-
diate relation I is stored back to DRAM. The second join I(A,B,C) ./ T (C,D)
is identical except the output results are no longer materialized in DRAM. For
the second join, we also load partitions of relation T on-chip while streaming
previous join intermediate result, since |R ./ S| >> |T |. The bucket sizes of the
second level hash functions for both the joins are fixed to the number of PMUs,
i.e. h = g = U .

Fig 4 (a) shows the breakup of the execution time of a cascaded binary self
join of three relations with a varying number of buckets i.e. Hbkt. The orange
region shows time spent in partitioning the relations for both the joins, which
is dominated by the second join due to large size of the intermediate relation.
Clearly, the first join is bounded by DRAM-bandwidth, varying Hbkt has no
impact on the performance. Fig 4 (b) shows variation of the execution time of
the second join varying Gbkt. The second join is compute-bound at small Gbkt ,
as the total amount of data loaded is |R ./ S|+|T |, whereas the total comparison

is |R./S||T |
d .

Comparison with Postgres We compare the performance of cascaded binary
join on CPU to that on the accelerator using configuration given in Section 6.1.
For CPU-based implementation, we follow a COUNT aggregation immediately
after the cascaded binary joins, which prevents materializing the final output in
memory. Postgres is configured to use a maximum of 130 threads. At runtime,
we observe only 5 threads are used at 100% for our problem size.

Fig 4 (c) shows the speedup of binary self join on the accelerator over the
CPU with varying sizes of the relations and distinct values in joining columns
(d). Although the CPU has much higher memory bandwidth, our experiments
show >100x speedups from the accelerator. We observe a limited improvement
or even worse when parallelizing a single join on CPU compared to the single-
threaded execution. The parallel execution can be bottlenecked by communi-
cation on shared last-level cache and overhead from full system database like
Postgres. On the other hand, the total amount of parallelism on the accelerator
is the product of the number of PCUs with SIMD computation (a vector of size
16) within each PCU, which is 64× 16 = 1024. Furthermore, the static on-chip
network provides 384GB/s bandwidth between the nearest neighbor CUs. The
high compute density and on-chip memory and network bandwidth shift the
performance bottleneck to DRAM for streaming in the intermediate relation on
Plasticine. Fig 4 (c) shows that smaller percentage of unique values, d% are asso-
ciated with increasing speedup (up to 450x) due to the large-sized intermediate
relation in the cascaded binary join, which also increases the computation and
communication in the second cascaded binary join.
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Fig. 4. Performance Evaluation of 3-way join vs. cascaded binary joins. (a,b) 2-way
self linear join execution time with breakup. Red, green, and yellow region indicate ex-
ecution time for the first join, the second join, and partitioning time for both. Marker
indicates performance bottleneck in computation (comp), streaming in R ./ S relation
in second join (stream RS), or storing R ./ S in first join (store RS). (c) Speedup on
Plasticine over CPU for cascaded binary self joins. (d) 3-way linear self join perfor-
mance. Marker indicates bottleneck of performance in computation (comp) or stream-
ing in T relation (stream T). (e) Speedup of 3 vs. binary join on linear self join with
DDR3 and SSD bandwidth at 49GB/s and 700MB/s. The vertical dashed lines indicate
when intermediate results do not fit in DRAM for binary join. The horizontal dashed
line indicates speedup of 1. (f) Speedup of Self linear 3-way join vs. cascaded binary
join with different off-chip memory bandwidth. (g) Performance of Star 3-way join with
varying d and hbkt. (h,i) Speedup of 3-way join vs.cascaded binary joins with d and K
at different off-chip memory bandwidth.
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6.4 Performance Analysis of Linear Self Join

We consider R(AB) ./ S(BC) ./ T (CD), where R,S,T are copies of the friend-
friend relations with N records and d distinct users (column values).

Hyper-parameter Selection We shall discuss the evaluation of hyperparam-
eter selection of algorithm described in Section 4. Fig 4 (d) plots the execution
time of 3-way join varying with Hbkt and gbkt (hbkt = number of PMUs). It
shows that the algorithm achieve higher speedup for larger size partition of R
partition (i.e. small Hbkt) while exploiting DRAM prefetching. For small gbkt,
the algorithm is compute-bound for joining buckets from three relations within
PMUs (3-level nested loop). As gbkt increases, the compute complexity reduces
with smaller of size T buckets and the performance bottleneck shifts to DRAM
bandwidth for streaming in T records. For large values of gbkt, the Sij bucket

within each PMU becomes very small (i.e. |S|Hhg ), resulting in very poor DRAM
performance for loading Sij . Although some PCU might have empty Sij bucket,
the algorithm has to wait for completion from other PCUs with non-empty Sij

buckets because all PCUs shares the streamed T records. This synchronization
and poor DRAM performance on Sij bucket eventually increases execution time
dramatically when gbkt becomes too large.

3-way Join vs. Cascaded Binary Joins Fig 4 (e) and (f) shows the speedup
of 3-way join over cascaded binary joins with varying average friends per person
(f = N

d ), and DRAM bandwidth on the accelerator. When relation size (N)
is small, 3-way join achieves up to 15x performance advantage over binary-join
because the latter is heavily IO-bound compared to compute-bound 3-way join,
and the accelerator favors compute bound operations. However, the speedup
decreases with increase in relation size, N . Because the compute complexity
of 3-way join increases quadratically with N , whereas, size of intermediate re-
lation of the cascaded binary joins increases quadratically with N . When the
intermediate relation fails to fits in DRAM, the off-chip bandwidth drops from
49GB/s to 700MB/s, which is shown as a step increase in the speedup of 3-way
over the binary join in 4 (e) and (f). With more friends per person, the per-
formance cliff happens at smaller relation size. (f) shows that the advantage of
3-way join is more significant when intermediate result fit as binary-join will be
more DRAM-bandwidth bounded for smaller DRAM; and less significant when
the intermediate result does not fit, at which point, binary-join will be SSD
bandwidth-bounded, whereas 3-way join can still benefit from higher DRAM
bandwidth.

6.5 Performance Analysis of Linear Star 3-way Join

Now we consider a special case of linear join where R and T relations are small
enough to fit on-chip9. Now we only need one level of hash functions on both

9 With plasticine, this means the dimensions relations are on the order of millions of
records.
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columns B and C, naming h(B) and g(C). The only difference between cascaded
binary joins and 3-way join is that binary join only performs one hash function
at a time, which allow h = g = U . For 3-way join, we map a (h(b), g(c)) hash
value pair to each PMU, which restricts number of buckets to hg = U . For both
3-way and cascaded binary joins, we first load R and T on-chip, compute hash
functions on the fly, and distribute the records to PMUs with corresponding
assigned hash values (in binary join) or hash value pairs (in 3-way join). Next,
we stream S, compute hash values and distribute to the corresponding PMUs,
where the inner join is performed.

Fig 4 (g) shows the execution time of the 3-way join with varying hbkt (Note,
hbkt must be dividable by U to achieve the maximum hg). Fig 4 (h) and (i)
shows the speedup of 3-way join over a cascade of binary star join. We can see
that with increasing DRAM-bandwidth, the advantage of 3-way join eventually
disappears since storing and loading intermediate results in binary join becomes
free, when they fit on the chip. 3-way join can also be slower than binary join
for larger number of buckets (ie. less computation), where number of buckets is
hg = U2 for binary and hg = U for 3-way join join10).

7 Conclusions

Multiway join involves joining of multiple relations simultaneously instead of
traditional cascaded binary joins of relations. In this paper, we have presented
algorithms for efficient implementation of linear and cyclic multiway joins using
coarse grain configurable accelerator such as Plasticine, which is designed for
compute-intensive applications and high on-chip network communication. The
algorithms have been discussed with their cost analysis in the context of three
relations (i.e. 3-way join).

The performance of linear 3-way joins algorithms are compared to the cas-
caded binary joins using performance model of the Plasticine-like accelerator. We
have shown 100x to 450x improvements for traditional cascaded binary joins on
the accelerator over CPU systems. We have concluded that 3-way join can pro-
vide higher speedup over cascaded binary joins in a DRAM bandwidth-limited
system or with relations having low distinct column values (d) (which results
in large size intermediate relation). In fact, the effective off-chip bandwidth will
dramatically reduce when the intermediate size does not fit in DRAM, in which
case binary join will provide a substantial improvement over 3-way join. We have
shown that a Self 3-way join (e.g, friends of friend query) is 45X better than a
traditional two cascaded binary joins for as large as 200 million records with
700 thousand distinct users. A data-warehouse Star 3-way join query is shown
to have 11X better than that of cascaded binary joins.

In future work, we would like to explore additional levels of hashing beyond
two levels, and exploring new algorithms, such as set value join [2], within on-
chip join to speedup multi-way join. We plan to extend the algorithms for skewed

10 Total amount of comparison in cascaded binary join roughly equals to |R||S|
h

+
|R./S||T |

g
= |R||S|

h
+ |R||S||T |

dg
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data distribution in relations and analyze the improvements in the performance
and power of the algorithms on Plasticine accelerator.

A Performance Model of Plasticine

In this section, we provide more details on the analytical performance model
used for algorithm performance estimation on Plasticine-like accelerator. The
performance model analyzes the loop structures of each algorithm, takes into
account how applications are spatially parallelized and pipelined on hardware
resource, and provides a cycle-level runtime estimation given data characteristics
and architectural parameters as inputs. Fig. 6 shows the loop structures of 3-way
and cascaded binary self and star join algorithms on the accelerator. To avoid
confusion, we use 〈hash〉2 and 〈hash〉3 for hash functions of binary and 3-way
joins- they do not need to be the same.

In Fig. 5 (a), the circles indicate one-level of loop nest, and the hierarchy
indicates the nest levels between loops. #par[P] in 5 (b) suggests a loop paral-
lelized by P. #pipeline in Fig 5 (c) indicates overlapping execution of the inner
loops across iterations of the outer loop, e.g. B can work on the second iteration
of A while C is working on the first iteration of A. The pipeline construct is
commonly used when a tile of data is reused multiple times on-chip, in which
we can overlap prefetching of future tiles with execution of the current tile. In
contrary, #streaming in 5 (d) indicates fine-grain pipelining between producer
and consumer loops, where the consumer loop only scans the data once without
any reuse. In such case, C can execute as soon as B produces the first chunk of
data, without waiting for B to finish on one entire iteration of A.

On Plasticine-like acelerator, an example of the streaming construct is stream-
ing data from DRAM directly to PCUs without storing to PMUs. To compute
execution time (or run time) , we need the throughput (thrpt) and latency (lat)
of which B and C produces/consumes data chunks. For DRAM, throughput and
latency can be derived from DRAM bandwidth and response time, respectively.
For loops executed on Plasticine, throughput is the amount of allocated paral-
lelism between (U) and within PCUs (L). We used U = 64 PCUs and SIMD
vector width L = 16 in our evaluation. The latency is the sum of network latency
(we used the worst diagonal latency on a 16 × 8 chip, which is 24 cycles) and
pipeline latency of the PCU (6 cycles). The overall runtime of the outer loop is
bounded by the stage with minimum throughput.

Finally, for data-dependent execution in 5 (d), we compute runtime by as-
sociating a probability to each branch. For example, in Fig. 6 (a), the branch on
SC == TC indicates comparisons on S records with streamed T records. Only
matches records will be compared with R records. The probability of this branch

is the expected size of S ./ T , which is |S||T |d , over the total number of compar-
isons performed between S and T records. The number of comparison is the prod-

uct of loop iterations enclosing the branch, which is H3h3g3
|T |
g3

|S|
H3g3h3

= |S||T |
g3

.

This gives the probability of g3
d on the branch hit.
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for(A){ // A iters 
  for(B) { ... } 
  for(C) { ... } 
}

#par[p] 
x 

Loop Running x iterations
parallelized by p ⌈ ⌉

x

p

A(B + C)

B and C are pipelined over
iterations of A

(A − 1) max (B, C) + B + C

fine-grain streaming max ( , ) − 1 + +
AB

Bthrpt

AC

Cthrpt

Blat Clat

Conditionally executes C
based on branch B with
probability  to be truePB

A( C + 1 − P)PB

Diagram Description Runtime
A

B C

A
B C

#pipeline

A
B
C

A
B C
#streaming

(b)

(a)

(c)

(d)

(e)

Fig. 5. Runtime model for different loop schedule.

�3

#par[U]
ℎ3

�3

|� |

�3

|�|

�3�3ℎ3

SC==TC

#par[L]
|�|

�3ℎ3

|�|

�3

|�|

�3�3ℎ3

T

RB==SB

�2

#par[U]
ℎ2

|�|

�2ℎ2

#par[L]
|�|

�2ℎ2

RB==SB

S

|�|

�2

� ⋈ �

#par[U]
ℎ3�3

|�| + |� |

|�|

ℎ3�3

|�|

ℎ3

RB==SB

#par[L]
|� |

�3

TC==SC

S

#par[U]
ℎ2

|�|

|�|

ℎ2

#par[L]
|�|

ℎ2

RB==SB

S

� ⋈ �

Dataflow

#pipeline

#pipeline

#streaming

#streaming #streaming

#pipeline

#streaming

(a) (b) (c) (d)

|R|: Size of table R
h: # buckets of hash h
U: # PMU / # PCU
L: # SIMD lane in PCU

X
Load X records from
DRAM to SRAM

T
Stream in a record of
table T from DRAM to
PCU without storing to
PMU

T
Stream out a record of table T.
For binary join, only the first
join materializes the output.

#streaming

#streaming

Branch. Controls below
branch executes only if the
branch evaluates to true.
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Using a similar approach, we can derive probabilities of all data-dependent
branches. The runtime of each algorithm in Fig. 6 is recursively evaluated at each
loop level using equations shown in Fig. 5. The exact model is open-source and
can be found at https://github.com/yaqiz01/multijoin_plasticine.git.
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