My First DSL
A Delite DSL consists of a set of data types and operations. Delite DSLs are embedded in Scala, a host language designed to accomodate DSLs. Scala provides syntactic flexibility, an advanced type system with type inference, higher order functions, function currying, pattern matching, and lazy evaluation, among other features that allow library builders to develop powerful and easy to use abstractions.
Traditional embedded DSLs follow the 'just a library' approach: DSLs use these advanced features to provide syntactic sugar, but in the end are simply Scala applications compiled by the Scala compiler. Our approach, a collaboration with the Scala team at EPFL, takes DSL development another step forward. We want to take the best parts of the library approach - the free adoption of a parser, lexer and a type checker - and add to it the ability to build, optimize, and code generate from an intermediate representation (IR). In this way, we will transform sequential DSL code to heterogeneous, parallel code, capable of transparently running on different hardware devices. For more information about our techniques, please see our publications.
In this example, we are going to design a very simple profiling DSL. The goal of this DSL is to make it easy to measure the time elapsed in different parts of an application. Here's an example of what we want to be able to do when we're finished:
val time =
profile (10) times {
... blah blah ...
} report average
To make this DSL, we need to define at least three things: data structures, the nodes of our intermediate representation (IR), and the code generators for those nodes. Let's start with data structures.
Our simple profiling DSL doesn't need much in the way of data. Let's just define a collection, an array, that contains the time elapsed for the last n runs. First, start from the base directory of the Delite distribution, and create a source directory for our project:
mkdir -p dsls/profiling/src
Now, let's define our array, which we'll call ProfileArray, in a package called "example.profiling.datastruct.scala".
mkdir -p dsls/profiling/src/example/profiling/datastruct/scala/
Write ProfileArray.scala inside the directory as follows:
package example.profiling.datastruct.scala
class ProfileArray(val _numMeasurements: Int) {
val _data = new Array[Double](_numMeasurements)
}
We've just defined the only data structure
that we'll need for this example. Now we need to implement our DSL methods - but instead of implementing them directly, we want
to build an intermediate representation. We are going to use the LMS library and Delite to do it. Open up a file called ProfileOps.scala
inside dsls/profiling/src/example/profiling
:
package example.profiling
import scala.virtualization.lms.common.{ScalaGenEffect, Base, EffectExp}
// this is the abstract interface of our profiling methods
trait ProfileOps extends Base {
def profile(n: Rep[Int]) = new ProfileOpsCls(n)
// syntax
class ProfileOpsCls(n: Rep[Int]) {
def times(func: => Rep[Any]) = profile_body(n, func)
}
// implementation
def profile_body(n: Rep[Int], func: => Rep[Any]): Rep[ProfileArray]
}
Rep
is an abstract type constructor. Using this technique, applications are oblivious to the particular
representation (which is actually bound only at compile time when all of the DSL traits are mixed together). Any operation on a Rep[T]
we can override to do whatever want - or, as in this case, we can simply provide a method, profile
, that takes a Rep[Int]
,
does something, and returns a Rep[ProfileArray]
. The 'something' we are interested in is creating an IR node. We'll do that next,
by expanding ProfileOps.scala to include an implementation of profile_body:
trait ProfileOpsExp extends ProfileOps with EffectExp {
case class Profile(n: Exp[Int], body: Block[Any]) extends Def[ProfileArray]
def profile_body(n: Exp[Int], func: => Exp[Any]) = {
reflectEffect(Profile(n, reifyEffects(func))) // create an IR node
}
override def boundSyms(e: Any): List[Sym[Any]] = e match {
case Profile(n, body) => effectSyms(body)
case _ => super.boundSyms(e)
}
}
So far, so good. When an application uses our 'profile' method, we'll actually build an IR node and hand them back a representation
of the type they were expecting. With type inference, they don't even have to be aware that they got a Rep[ProfileArray]
instead of a real ProfileArray
! We haven't shown how to generate code for Profile
yet - we'll get to that
soon. But first, let's finish our DSL op implementation: we need to define the report function for ProfileArray
.
Just like before, open up a file called ProfileArrayOps.scala inside dsls/profiling/src/example/profiling
:
package example.profiling
import reflect.{Manifest, SourceContext}
import scala.virtualization.lms.common.{NumericOpsExp, FractionalOpsExp, Base}
import scala.virtualization.lms.common.ScalaGenBase
import ppl.delite.framework.ops.{DeliteCollectionOpsExp,DeliteOpsExp}
import ppl.delite.framework.datastruct.scala.DeliteCollection
trait ProfileArrayOps extends Base {
// a simple way of enumerating choices in our syntax
class Reporter
object average extends Reporter
object median extends Reporter
// add report and length methods to Rep[ProfileArray]
def infix_report(x: Rep[ProfileArray], y: Reporter) = profile_report(x, y)
def infix_length(x: Rep[ProfileArray]) = profile_length(x)
// implementation
def profile_report(x: Rep[ProfileArray], y: Reporter): Rep[Double]
def profile_length(x: Rep[ProfileArray]): Rep[Int]
}
trait ProfileArrayOpsExp extends ProfileArrayOps with NumericOpsExp
with FractionalOpsExp with DeliteCollectionOpsExp with DeliteOpsExp {
// a Delite parallel operation! was it really that easy?
case class ReportSum(in: Exp[ProfileArray])
extends DeliteOpReduce[Double] {
val zero = unit(0.0)
val size = copyTransformedOrElse(_.size)(in.length)
def func = (a,b) => a + b
}
// median is a little trickier, let's just be sequential
case class ReportMedian(in: Exp[ProfileArray]) extends Def[Double]
// length, apply, update need to reference the underlying data structure
case class ProfileLength(in: Exp[ProfileArray]) extends Def[Int]
case class ProfileApply(in: Exp[ProfileArray], n: Exp[Int]) extends Def[Double]
case class ProfileUpdate(in: Exp[ProfileArray], n: Exp[Int], y: Exp[Double])
extends Def[Unit]
/////////////////////
// delite collection
def isProfileArray[A](x: Exp[DeliteCollection[A]]) = x.isInstanceOf[Exp[ProfileArray]]
def asProfileArray[A](x: Exp[DeliteCollection[A]]) = x.asInstanceOf[Exp[ProfileArray]]
override def dc_size[A:Manifest](x: Exp[DeliteCollection[A]])
(implicit ctx: SourceContext) = {
if (isProfileArray(x)) asProfileArray(x).length
else super.dc_size(x)
}
override def dc_apply[A:Manifest](x: Exp[DeliteCollection[A]], n: Exp[Int])
(implicit ctx: SourceContext) = {
if (isProfileArray(x)) (profile_apply(asProfileArray(x),n)).asInstanceOf[Exp[A]]
else super.dc_apply(x,n)
}
override def dc_update[A:Manifest](x: Exp[DeliteCollection[A]], n: Exp[Int], y: Exp[A])
(implicit ctx: SourceContext) = {
if (isProfileArray(x)) profile_update(asProfileArray(x),n,y.asInstanceOf[Exp[Double]])
else super.dc_update(x,n,y)
}
def profile_report(x: Exp[ProfileArray], y: Reporter) = y match {
case this.average => ReportSum(x) / x.length // inline
case this.median => ReportMedian(x)
case _ => throw new IllegalArgumentException("unknown report type")
}
def profile_length(x: Exp[ProfileArray]) = ProfileLength(x)
def profile_apply(x: Exp[ProfileArray], n: Exp[Int]): Exp[Double]
= ProfileApply(x,n)
def profile_update(x: Exp[ProfileArray], n: Exp[Int], y: Exp[Double])
= ProfileUpdate(x,n,y)
}
That's all the IR definition we need! The only surprising piece here is the overrides for dc_apply, dc_update, and dc_size
. dc
here stands
for "DeliteCollection". These methods are statically dispatched inside DeliteOps
; they tell DeliteOps
how to access the underlying data
for a particular collection. We have just one more piece of the language left to implement:
code generators. Luckily, the generators for Profile and ReportMedian are simple, and because
ReportAverage is a DeliteOp, Delite takes care of that one for us! Let's start with the generator
for Profile. Open ProfileOps.scala again, and add this snippet to the bottom:
trait ScalaGenProfileOps extends ScalaGenEffect {
val IR: ProfileOpsExp
import IR._
override def emitNode(sym: Sym[Any], rhs: Def[Any]) =
rhs match {
// insert instrumentation code around function body
case Profile(n, body) =>
stream.println("val " + quote(sym) + " = {")
stream.println("val out = new ProfileArray(" + quote(n) + ")")
stream.println("var i = 0")
stream.println("while (i < " + quote(n) + ") {")
stream.println(" val start = System.currentTimeMillis()")
emitBlock(body)
stream.println(" val end = System.currentTimeMillis()")
stream.println(" val duration = (end - start)/1000f ")
stream.println(" out._data(i) = duration")
stream.println(" i += 1")
stream.println("}")
stream.println("out")
stream.println("}")
case _ => super.emitNode(sym, rhs)
}
}
That takes care of Profile
. Now, similarly for ProfileArray:
trait ScalaGenProfileArrayOps extends ScalaGenBase {
val IR: ProfileArrayOpsExp
import IR._
override def emitNode(sym: Sym[Any], rhs: Def[Any]) =
rhs match {
case ReportMedian(x) =>
val a = quote(x)
val size = a + "._numMeasurements"
stream.println("val " + quote(sym) + " = {")
stream.println("val d = new Array[Double]("+size+")")
stream.println("System.arraycopy("+a+"._data, 0, d, 0, "+size+")")
stream.println("scala.util.Sorting.quickSort(d)")
stream.println("d(Math.ceil("+size+"/2).asInstanceOf[Int])")
stream.println("}")
case ProfileLength(x) => emitValDef(sym, quote(x) + "._numMeasurements")
case ProfileApply(x,n) => emitValDef(sym, quote(x) + "._data(" + quote(n) + ")")
case ProfileUpdate(x,n,y) =>
emitValDef(sym, quote(x) + "._data(" + quote(n) + ") = " + quote(y))
case _ => super.emitNode(sym, rhs)
}
}
So close! We've finishing defining our entire DSL. Now we just need to put some machinery together so that applications can use it. In the same directory as ProfileOps.scala, open up a file called Profile.scala. Here, we're going to add package definitions and Delite hooks so that DSL applications can easily import our DSL into scope.
package example.profiling
import scala.virtualization.lms.common._
import scala.virtualization.lms.internal._
import ppl.delite.framework._
import ppl.delite.framework.codegen._
import ppl.delite.framework.ops._
import ppl.delite.framework.datastruct.scala.DeliteCollection
import codegen.delite.overrides._
import codegen.scala.TargetScala
import java.io.File
/* Profile DSL front-end types */
abstract class ProfileArray extends DeliteCollection[Double]
/* Application packages */
trait ProfileApplicationRunner extends ProfileApplication
with DeliteApplication with ProfileExp
trait ProfileApplication extends Profile with ProfileLift {
var args: Rep[Array[String]]
def main(): Unit
}
trait ProfileLift extends LiftScala { // allow apps to use all of Scala
this: Profile =>
}
/* IR packages */
trait Profile extends ScalaOpsPkg with ProfileOps with ProfileArrayOps
trait ProfileExp extends Profile with ScalaOpsPkgExp with ProfileOpsExp
with ProfileArrayOpsExp with DeliteOpsExp with VariantsOpsExp
with DeliteAllOverridesExp {
this: DeliteApplication with ProfileApplication with ProfileExp =>
def getCodeGenPkg(t: Target{val IR: ProfileExp.this.type}):
GenericFatCodegen{val IR: ProfileExp.this.type} = {
t match {
case _:TargetScala => new ProfileCodeGenScala {
val IR: ProfileExp.this.type = ProfileExp.this
}
case _ => throw new IllegalArgumentException("unsupported target")
}
}
}
/* Code generator packages */
trait ProfileCodeGenBase extends GenericFatCodegen with codegen.Utils {
val IR: DeliteApplication with ProfileExp
override def initialDefs = IR.deliteGenerator.availableDefs
def dsmap(s: String) = {
var res = s.replaceAll("example.profiling.datastruct", "generated")
res.replaceAll("example.profiling", "generated.scala")
}
override def remap[A](m: Manifest[A]): String = dsmap(super.remap(m))
override def emitDataStructures(path: String) {
val s = File.separator
val dsRoot = Config.homeDir + s+"dsls"+s+"profiling"+s+"src"+s+
"example"+s+"profiling"+s+"datastruct"+s + this.toString
copyDataStructures(dsRoot, path, dsmap)
}
}
trait ProfileCodeGenScala extends ProfileCodeGenBase with ScalaCodeGenPkg
with ScalaGenDeliteOps with ScalaGenProfileOps with ScalaGenProfileArrayOps
with ScalaGenVariantsOps with ScalaGenDeliteCollectionOps
with DeliteScalaGenAllOverrides {
val IR: DeliteApplication with ProfileExp
}
This probably looks like a lot of voodoo - and indeed, there is a little. Check out the slides from our DSL course to learn more about the details. In general, we are
- Defining abstract front-end language types that are independent from our back-end datastructures
- Defining separate packages for abstract operations, IR nodes and code generators
- Declaring which parts of Scala we want to allow DSL applications to use (in this case, everything)
- Telling Delite how to access our code generators
- Providing a utility method to map the data structure we defined earlier to one that will be used from generated code
Finally, our DSL is in place. Now we can write an application and test it! Let's call it HelloProfile.scala:
import example.profiling._
object HelloProfileRunner extends ProfileApplicationRunner with HelloProfile
trait HelloProfile extends ProfileApplication {
def main() = {
var acc = 0.
val time =
profile (100) times {
for (i <- 0 until 100000) {
acc += Math.exp(i)*Math.pow(i,10.0)*42.0
}
} report average
println("average loop time: " + time)
}
}
Run it the same way we did in the getting started guide. You can use 'sbt' with it by adding the following line to project/Build.scala, inside the DSLs class:
lazy val profiling = Project("profiling",
file("dsls/profiling"),
settings = virtBuildSettings)
dependsOn(framework)
dsls
project to include profiling:
lazy val dsls = Project("dsls",
file("dsls"),
settings = virtBuildSettings)
aggregate(optila,optiml,optiql,profiling)
Note that you can add the profiling DSL to your classpath so that delitec
can find it by opening up the file bin/delitec
and adding profiling to the list of DSLs:
DSLs = ['optiml', 'optila', 'optiql', 'profiling']
Congratulations! You just built your first Delite DSL. Go try it out with some test apps!
We've only scratched the surface though - Delite and LMS both offer many more features, including
more DeliteOp types, a CUDA generator, cool optimizations, a system for managing side effects, and more.
The best place to get started is to look at existing DSL code (such as OptiML code). You should start to see
patterns emerge that you can use right away while you are becoming more familiar with the system.
If you run into any problems, don't hesitate to check out the troubleshooting page,
or contact us.